-A187 499 CHIPS: A TOOL FOR DEVELOPING SOFTMARE INTERFACES
INTERACTIVELY. . (U) PITTSBURGH UNIY PA LEARNING RESEMCN
AND DEVELOPMENT CENTER.. R E_CUNNINGHAM ET AL. OCT 8?7
UNCLASSIFIED UPITT/LRDC/ONR/LSP-4 NO®O14-83-K-06355 F/G 12/

N

-

el L AN A DO Y Vi s &k

PP o . (SRR Ji g
B D B AR .
SN A B o e e N0l [4 . }
> NN e T AN Ak SANGE
o3 Y uuv Lgvl?hlxlﬂ..-.-.-\uw--f.l-l T. RARSFF S

4
5
’
2
g
4
:
:
?

e

A
A

v
'I
S
J--\dn
-..!Mv .
TAA
R
. .) w..r..._r [J X
S N ¢ Yart
ol <= < A A
= m lf w- L 5% %
ol ~ . = .Nﬂ-ﬂ oL -\..\..,\-n
& SH =B K | ny, RARE
= o <¢ of\f .~..-\...
EEEE i - ALY
u&r_r—n_n—._._ RPN B At ®
= D e
a I
o S n
) 1 o B K
— | — Il X A,
] ¥ »
_ === = x WK
. - == W <
’ XA,
' @ e
v E e
* Loyt
r) W\- \-\- .
» 2 Yy _m
X f\f\ P
¥5 @ A
AR s
.
» I&f... Y
P A

[
S
T
-
.
-

®
0
-!‘.‘-"
e
b

"y
RN,
ATty

A%

R

-."_'.:_

:. ('-

NN
o
e
.r.:.-
ol
-r"';

.(F -
e
N %
y
N
e

Y
N
L J
[
L
*
[a

s
A

L
)

ONC FILE COPY o Q) =

o~
University of Pittsburgh 2
LEARNING RESEARCH AND DEVELOPMENT CENTER :::Z:
3
4
/,
5
. Chips: A Tool for Developing Software Interfaces Interactively o
._:,-,
@
E _._:,:
o)) \
7 :
™~ .
&0 Robert E. Cunningham
- John D. Corbett
< and)
| Jeffrey G. Bonar ‘ D L
2 October, 1987 oo :jEZ:
7
Technical Report No. LSP-4 - o
RS
N
w
" « =4
. ®
This work was supported by the Offlce of Naval Research, under Centract No.]
N00014-83-6-0148 and N00014-83-K-0855. Any opinfons, findings, conelusions, or)
recommendations expressed in this report are those of the authors, and do not necessarily :::j
reflect the views of the U.S. Government. s
Reproduction in whole or part Is permitted for any purpose of the United States r::":

Government.

Approved for public release; distribution unlimited.

CLASSIFIED
SECURITY CLASSIFICATION OF 'HIS PAGE ‘

LR AN

REPORT DOCUMENTATION PAGE

a. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKIN% 9 "” ;7.; ?
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution
unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
UPITT/LRDC/ONR/LSP-4
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION
Learning Research & Development (If applicable) Personnel & Training Research Programs
Center, Univ. of Pittshurgh Office of Naval Research (Code 1142PT)
6¢. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
3939 0'Hara Street 800 North Quincy Street
Pittsburgh, PA 15260 Arlington, VA 22217-5000
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
NO0Q14-83-K-0655
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
61153N RR04206 RR04206-00 |NR442¢524

11 TITLE (Include Security Classification)

CHIPS: A tool for Developing Software Interface Interactively
12 PERSONAL AUTHOR(S)
l__Robert E. Cypningham. John D. Corbett and Jeffrev G. Bonar
13a TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |1S PAGE COUNT

Technical FROM TO 1987, October 23 65
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) .
FIELD GROUP SUB-GRC /P Human/computer interfaces; Graphical interface; Direct manipuj
lation interface; .Visual programming; Object-oriented program;

ming; peeEr1akE race manggeﬁent sygtems‘;l ﬁrogrammnxg prog
environments

19, ABSTRACT (Continue on_reverse if necessary and jdent: block number) Chips is an_interactive tpol for develop-
ing so%tware employing grapfu[.ycarl hmuag/’(gomputer fnter%gces on Xerox ﬁlsp macﬁlnes. g’or P

the programmer, Chips provides a rich graphical interface for the creation of rich graphical
interfaces. In the service of an end user, Chips provides classes for modeling the graphi-
cal relationships of objects on the screen and maintaining constraints between them. Several
| large applications, including tutors for programming and electricity, have been developed wit
Chips.

Chips is implemented as a collection of customizable classes in Loops, the objected-oriented
extension to Interlisp-D. The three fundamental classes provided by Chips are DomainObject,
DisplayObject, and Substrate. DomainObject defines objects of the application domain,
DisplayObject defines mouse-sensitive graphical objects, and Substrate defines specialized
windows for displaying and storing collections of instances of DisplayObject.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
B uncLassiFieounumitTed O same as reT Joric USERS Unclassified

223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
Susan M. Chipman (202)696-4318 ONR 1142PT

DD FORM 1473, 8a maR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsotete UNCLASST FAIVITD_A

5, 8 7, 4

LAY
NI

A

r 4o
LA

NN
Y]
Iy .

'y 5

I ‘L"' o s

.

LA 28 | '
',.‘.'-‘v
h -

.
ey

.
a’e

P
I RIS

.
. a
»

Ay

.
ra
.

Y Ty ¥
L

¥

L
r‘ 5 .

oy %

PP

s e

R

‘1‘1. n"': 'o, ‘s

Vel
ty *e s s

v Chips: A Tool for Developing Software Interfaces Interactively

Robert E. Cunningham, John D. Corbett, and
“ Jeffrey G. Bonar

Learning Research and Development Center
b 3939 O’Hara Street

N University of Pittsburgh
Pittsburgh, Pennsylvania 15260

o)

ol

2l

Technical Report No. LSP-4

] %

PN

A% % 5]

This work was supported by the Office of Naval Research, under Contract No.
) N00014-83-6-0148 andN00014-83-K-0655. Any opinions, findings, conclusions, or

. recommendatlons expressed in this report are those of the authors, and do not necessarlly
o reflect the views of the U.S. Government.

[}

:.;, Reproduction iIn whole or part is permitted for any purpose of the Unlted States
W Government.

$.

" Approved for public release; distribution unlimited.

R A R L PN s A S A T (N
» L) - -l

AT IS g T T v A A B LB LNy \-.,"
» g . 4 .) [. LB at

. : Sa? gav * pa: . - -
v AW Yt afe Jh S o00 N ofd aFA o - R g SN W W WL T Ve

xS

Chips Technical Report

e s
..

Abstract

- Chips is an interactive tool for developing software employing graphical human/computer interfaces
on Xerox Lisp machines. For the programmer, Chips provides a rich graphical interface for the
creation of rich graphical interfaces. In the service of an end user, Chips provides classes for modeling
the graphical relationships of objects on the screen and maintaining constraints between them.

Several large applications have been developed with Chips including intelligent tutors for
programming and electricity.

e = -
v

oL, "

Chips is implemented as a collection of customizable classes in the Loops object-oriented extensions to
Interlisp-D. The three fundamental classes provided by Chipsare:

Ch N S v

DomainObject which defines objects of the application domain — the domain for which the

interface is being built — and ties together the various functionalites provided by the Chips
system,

Py

DisplayObject which defines mouse-sensitive graphical objects; and

r

Substrate which defines specialized windows for displaying and storing collections of instances of
DisplayObject.

3N

A programmer creates an interface by specializing existing DomainObjects and drawing new
DisplayObjects with a graphics editor. Instances of DisplayObject and Substrate are assembled on

screen to form the interface. Once the interface has been sketched in this manner, the programmer
can "build inward,” creating all other parts of the application through the objects on the screen. Chips
makes this easy by supplying simple and direct access to the source code and data structures of an N
application. Chips not only allows one to build powerful graphical interfaces, but provides the same
sort of powerful graphical interface to the programmer building the interface. " §

a”

. . -
e
o

Keywords: human/computer interfaces, graphical interface, direct manipulation interface, visual

programming, object-oriented programming, user interface management systems, programming
environments.

Typographic Conventions

Technical terms appearing in the glossary are italicized and underlined upon first use, i.e. display.
Menu selections are printed in a sans-serif font, i.e. Edit Mechanism. Class names are printed in a bold
faced sans-serif font, i.e. Substrate.

T, NN Y,

[n i Ty

e

i
s i
|

p‘?"i"- ‘.. ot ot

{1

Ry

_*

{

iy - - - e
l J .

WA

]

=
.
0

A
:
. - - - d

R Ty U S S S SRt T WA PO SR
i O o P o P P e O NG

Chips Technical Report

Acknowledgments

We would like to thank several people who provided important help and support during the
development of Chips.

We would like to acknowledge several people who developed applications using Chips, often putting up
with and working around deficiencies and bugs in early versions of the system. They provided many
helpful suggestions that were incorporated into the design, discovered problems that we had missed,
and provided much needed evidence that our ideas were on the right track. These diligent folks are
Andrew Bowen, Joyce Friel, Dan Jones, Steve Kalinowski, Debra Logan, Bob Merchant, and Jamie
Schultz.

Stewart Nickolas contributed important ideas to the project as well as providing inspiration for what
can be done with Xerox Lisp machines.

Arlene Weiner tried her best to teach us how to write. In the brief time she had to work with us, she
helped us decide upon our audience and present our ideas coherently.

Doug Roesch did early work with the latest version of Chips and created a lab for beginning Chips
users.

Marty Kent worked on FlowChips, a precursor to Chips, and left us with many good ideas.
Joyce Friel, Stewart Nickolas, and Doug Roesch read and commented on earlier drafts of this report.

Dr. Alan Lesgold, the associate director of the Learning Research and Development Center, is
responsible for the resources we use in our work and responsible that those who grant us resources are
satisfied with all our work in the Intelligent Tutoring Systems Group. Chips could have easily been
written off as a fruitless digression without his faith in us and his vision. Alan provided much needed
support and guidance, both professionally and personally, as well as creating an environment in which
we could do our work. This project could not have happened without him.

Jeff Bonar started and managed the Chips project. The Chips system itself was designed and
implemented in collaboration between John Corbett and Bob Cunningham. We gratefully
acknowledge, however, that Chips was built using as much of Interlisp-D and Loops as we could
rationally incorporate. Bob Cunningham did the lion’s share of the writing of this document. John
Corbett wrote earlier drafts, and participated in the writing.

i

......................

RTATRIAL S T P TR A R A A AT AR

Chips Technical Report

Table of Contents

L. IREOAUCEION ..o ettt e at et e et n bt ebr e te s 1
1.1 The Contribution of ChIPScocoiiiiii i 1
1.2 Current Approaches to Interface Developmentooiiii e 1
1.3 The Chips Approach to Interface Development ... 2
1.3.1 Exploring and Testing Interface Designs.............c.cccooiiiiiiiiiii e 2
1.3.2 Object-Oriented Interface Design...........cooooiii i 2
1.3.3 Controiling Programs by Manipulating Pictures......................... 3
1.3.4 Mocking UpanInterfaceccocooeiiiiiiiiiiii e 3
1.3.5 Establishing Relationships Between Application Objects 3
1.4 Interlisp-D/Loops Implementation...........cccooooiiiiiiiiiiiiii e 3
2. OVEIVIBW i s 4
3. DS St LB oot e ettt 5
3.1 Domain Objects as INSLANCEScooiiiiiiiiiiee e 5
3.1.1 Display Objects’ Graphical Data Structure.................ooocoiiiiiiiiiiiie e 5
3.1.2 Multiple Display Objects and Multiple Picture Specificationsc...occorinnnne 7
3.1.3 Physical Conmectors.............ooivmiiiiiieiiee et 8
3.1.4 Graphical Relationshipscccoiiiiiiiii e 8
3.2 The SUDSEIALEoooiiiiiiii e ettt et e e ete ettt bt 8
3.3 The Event QUeUE........ccoiiiiiiii ittt ettt ettt et e 9
3.4 CONNECLIONSeveieieeiiiiiiiiie e eetit e et e e et e et e e sttt e st ebe ettt bbbttt ettt nae s 10
3.5 MECRANISINScccuuiiiiiiiiiie ettt s et e et e ettt s ea et et e et 12
3.6 Events Streams and Display Streams..........ccocoociiiiiiiiniiiiii e 13
3.7 Saving Chips Classescccoooii ittt ettt 14
4. Chips Interactive Environment e 15
4.1 CRIPS ICOM ...ttt reeanens 15
4.2 CRIPS BrOWSETooiiiiiiiiiiic ettt e 17
4.3 Modifying-an application through the development interface..........................coe 20
4.3.1 Displaying overlapping displayobjects..............ccococoiiiiiii 20
4.3.2 Interactive editing of display object instances.......................occi e 22
4.3.3 Options available by selecting asubstrate.................c......o 26
4.3.4 The Display Editor............ooooiiiiiiiii e 30
5. A5esSion With CRIPS........oociiiiii e 33
5.1 Creatinganew domain object.................c.oooiiiiriiiiiiii e 33
5.2 Editing the display object of a class of domain object.....................oooiii, 33
5.2.1 Usingthe Display Editor ... 34
5.2.2 Defining the figure picture of a display objectccocccoiiiiiiinii 34
5.2.3 Defining the mask picture of adisplay objectccooo i 34
5.2.4 Defining the map picture of a display object ... 35
5.3 Using a domain object with a substrate 36
5.4 Interactively changinga display objectccoocooiii i 37
5.5 ConCIUSION ..ottt e e 39
REfOI@NCES.o e et ettt bt 41
Appendix A: Special Programming Techniquesccoo e Appendix 1A
A.1 A General Caching Function....................ccoiiiiin i Appendix 1A
A.2 Self-Inspecting Codeoooiiiiiiiii e Appendix 1A
A.3 FastBitmapIntersection........................cciiiiiiiiiinii i Appendix 1A
A4 The EAItWhen Macro..............oooiiiiiiiii et Appendix 2A
Appendix B: Applications ... Appendix 1B
B.1 Digital LOGIiC.......ooooii e Appendix 1B
B.2 Bridge VPL. ... Appendix 2B
B3 M0 e Appendix 6B
B.4 Voltaville. ... Appendix 9B y
GlOSSATY . i Glossary 1 "‘

3 5o Su)

AR
~

Chips Technical Report

w

| [roider: Zevwind| PICESLE: CINAEIAT! WNXKRANE WA AL YL LTI Ty L
et o - oo T We P K oy g ol M e e - e

Chips Technical Report

1. Introduction

Creating good human/computer interfaces is a notoriously difficult task. Furthermore, our current
best estimates indicate that interface design consumes 50% of the time on a large programming
project. Even with that large time budget, the interfaces produced are usually difficult to debug and
modify. This problem is compounded by the lack of any theory, or even consistent design guidelines,
that could guide the development of interfaces. Even the most carefully thought out interface is likely
to need some redesign when tried with real users.

Chips has been created to simplify the development of sophisticated interfaces. In particular, Chips
can cut the time needed to implement a prototype interface by a factor of ten. Chips allows interfaces
to be designed, thoroughly tested, and then discarded for more effective designs. With the extended
amount of empirical experience afforded by the use of Chips, there is the possibility for a
comprehensive theory of interface to emerge.

Ta create an interface in Chips, the programmer uses graphic editors to mock up interface designs by
drawing and arranging objects that appear on the computer’s display. The application underneath the
interface is created by building inward from this mock-up. Typically, a Chips user is building a direct
manipulation interface (see, for example, Hutchins, et al. [1986].) A direct manipulation interface
allows the user to command the computer by moving and selecting icons designed to behave like the
objects they represent.

1.1 The Contribution of Chips

Chips supports the development of direct manipulation interfaces directly. Chips objects can be
created, displayed, and manipulated directly. All the difficult a' Jorithms for smoothly dragging an
icon across the screen, having that icon interact correctly with other icons it moves over and near, and
connecting mouse or keyboard behavior to underlying functionality are provided in Chips. Chips
provides extensive support for editing the properties and behavior of an application interactively,
through the interface itself. Finally, Chips allows an interface to be simply saved and restored. In
summary, Chips allows the programmer to treat an interface as a object for inspection, manipulation,
and design.

The key potential of Chips is that it provides a sufficiently high level interface design language thata
theory of interface design can emerge. In particular, Chips supports a rich set of syntactic
relationships for objects in a diagram. Although the key difficulty in a theory of interface design is
relating the syntax of the diagram to the underlying semantics of the domain being represented in the
diagram, the systematic syntax of Chips' diagrams allows for a direct attack on representing
semantics. The phrase “syntactic relationships in a diagram” is meant to refer to the 2-D physical
relationships betwern the graphic elements in a diagram For example, one icon may be above
another icon, connected to another icon with a line, or have various mouse-sensitive areas (places
where a user can button and invoke a program).

1.2 Current Approaches to Interface Development

Most interfaces are written in traditional programming languages. These languages supply primitive
elements, such as commands for drawing lines and printing text, leaving the programmer to construct
more sophisticated objects such as menus. This is time consuming and often leads to complex and
idiosyncratic interfaces.

User Interface Management Systems (UIMS) [italicized underlined words also appear in the glossary]
improve this situation by packaging common elements of interfaces so they can be reused. In addition,
if the UIMS itself has an interactive interface, it may be possible to create entire application interfaces
without programming

A AN R YL w'\-'\—'\n'\-'\ ~

R S N R Y

P CTHITRATE AN TS LWL

Chips Technical Report

For many applications, a good UIMS is sufficient, however it is not clear what belongs in a good UIMS.
So rather than providing several specific interface elements, Chips provides two generic interface
elements and tools for specializing them.

1.3 The Chips Approach to Interface Development

Ay Ligfligafaly Lot

I."

.\ To create an interface in Chips, the programmer uses graphics editors to mock up interface designs by
:\ drawing and arranging the objects that appear on the computer’s display. It is only a slight
N

over-simplification to say the application is created by drawing it on the display and adding
functionality by "building inward.”

1.3.1 Exploring and Testing Interface Designs

Because so little is known about interface design, it is useful to try out various designs, especially with
potential users [Rosson, et. al,, 1987). The cost of this exploratory approach is prohibitive with
traditional programming languages; this is true even with systems designed for exploratory
programming such as the Interlisp-D programming environment [Sheil, 1983] unless the programmer
is a real master of interface design. Using Chips, one can experiment with many interface designs in
the time it takes to build a single interface without Chips.

Ny SAXALAS

il s,

For example, for the programming tutor Bridge, we designed and implemented six versions of a visual
programming language in three months. We estimate that this would have taken at least a year and a
half without Chips.

1.3.2 Object-Oriented Interface Design

Objects on the display are more than pictures; they are objects that respond to the user’s actions, such
as selection with the mouse, and interact with one another. For a complete introduction to
object-oriented programming see Smalltalk-80: the Language and Its Implementation [Goldberg and
Robson, 1983].

Object-oriented programming is based on the notion of objects interacting by sending messages to one
another. An object is a semi-autonomous combination of a data structure and procedures for
responding ‘o messages. Message names, unlike procedure names in most programming languages,
need not be unique, thus objects of different classes can use different methods to respond to a particular
message.

A new class of objects can be defined by specifying only how it differs from an existing class of objects.
The new class is said to inkerit everything that it does not specifically define. The new classiscalled a
specialization of those classes used to define it.

The generic interface elements referred to above are classes of objects; they are named DomainObject,
DisplayObject, and Substrate. Objects which are instances of the class DomainObject or any
specialization of the class DomainObject are called domain objects. Objects which are instances of the
class DisplayObject or any specialization of the class DisplayObject are called display objects.
Similarly, objects which are instances of class Substrate are called substrates. The terms domain

object, display object, and substrate are used to refer to instances of these classes. Classes will be
referred to explicitly and printed in a bold sans-serif font, i.e. DomainObject.

Substrates are objects which appear as rectangular regions on the display. They are specialized
windows used to create domain objects and display their associated display objects. Domain objects
are focal points that allow the combination of the various behaviors of the the Chips system. Display
objects are mouse-sensitive objects with arbitrary pictures. DomainObject, DisplayObject, and

Substrate are the basic classes for objects in interfaces. They inherit many of the common aspects of

Chips Technical Report

graphical interfaces, yet the programmer can specialize any aspect of them and thus is not locked into
the existing ways of doing things.

1.3.3 Controlling Programs by Manipulating Pictures

Chips is especially useful for constructing direct manipulation interfaces (DMI). These allow the user
to command the computer by moving and selecting cartoon-like icons designed to behave somewhat
like the objects they represent. The Apple Macintosh employs direct manipulation extensively and is
widely considered one of the easiest computers to use for people who are not necessarily computer
specialists. The advantages of direct manipulation are widely recognized, [Hutchins, et. al., 1986].

Unfortunately, DMI are often difficult to construct and difficult to modify once they are constructed
The programmer needs to write programs to create the pictures, move the pictures around the screen,
determine what picture the mouse is pointing to, what pictures on the screen represent, what to do
when an icon is selected, and so forth. Although programming languages provide commands for
drawing geometric figures and ways of sensing the mouse, these basic capabilities are far removed
from the task of directly manipulating graphical objects.

Chips classes provide these aspects of DMI automatically. Once objects from Chips are created and
displayed, they can be manipulated directly, selecting an object with the mouse cursor causes that
object to animate and follow the cursor around the display or causes that object to display a menu of
operations to be performed on it or on objects related to it.

Chips provides extensive support for editing the properties and behavior of an application
interactively, through the interface itself. Every object of an interface that appears on the screen can
be edited by selecting the object and choosing the aspect of the object to edit. This behavior is useful
throughout the development process, so usually the programmer makes the application interface by
adding behavior and only disables the default behavior when it might confuse unsuspecting users by
allowing them to stumble into the program code and data structures.

Thus it is easy to assemble objects of the application interface on the display and having done that, to
use these objects to access relevant portions of the application program code and data structures. This
feature of Chips facilitates the entire software development process by providing convenient access to
the program code and data structures; “What You See Is What You Get” moreover, "What You See
You Can Edit.”

1.3.4 Mocking Up the Interface

Using direct manipulation, a user creates an interface by drawing pictures of the interface objects and
arranging them on the screen in appropriate places. The interface can then be saved to a file and
recreated simply by loading the file. This allows a user to effectively mock up an application interface
without programming.

1.3.5 Establishing Relationships Between Application Objects

Chips provides explicit means for establishing connections between domain objects. Chips defines
connections between objects to reflect relationships between those objects both on the display and in
the computer. Chips also defines mechanisms which allow aspects of a domain ohject to be
implemented with a collection of domain objects, like the clockwork inside a clock

1.4 Interlisp-D/Loops Implementation

Chips is an integrated extension to the Interlisp-D/Loops programming environment Loops [Bobrow
and Stefik, 1981] provides object-oriented programming with multiple inheritance Both Loops and
Interlisp-D [Sannella, 1985] provide a very sophisticated programming environment includinyg
graphical browsers and program inspection facilities. They run on Xerox 1100 Series workstations

- - - -—. - - . - L '.< --’ - » - . . -.. - . ».‘ ". -.. n ‘., - . g-.'-.~' ..‘-
Pl e e e e O L W e e

e Rt et aa
- J-"J X J','- _.4:\. \.r

R JF AN

ae N Y

5y

Ot
I VYNIEL TR

‘N0 5

P
a’sa’aa

g 0 g
a_ e,

Chips Technical Report

Chips performs well on the Xerox 1186, which is one of the least expensive and least powerful of
workstation class computers. In light of this, we feel the concepts demonstrated by Chips are practical
for almost any workstation.

2. Overview

The remainder of this report discusses Chips from several different perspectives. Section 3, Chips
Structures, gives a detailed explanation of the major features of Chips. Section 4, Chips Interactive
Environment, provides an in depth discussion of the interactive aspects of the Chips development
environment. Section 5, A Session with Chips, presents an example session using Chips to develop
and modify a small portion of an interface. Appendix A, Special Programming Techniques,
describes four programming techniques that we have found useful in the development of Chips:
self-inspecting code, a general purpose caching scheme, a fast bitmap intersection algorithm, and the
EditWwhen macro. Appendix B, Applications, describes several systems developed at the Learning
Research and Development Center using Chips. The final section, Glossary, describes key terms used
in this report.

A S YR N L P ' - --.\\.-._-.--~

4\.."._‘4\;&;.}4-_. _.r.“rA.u._k.x .\.x\:ﬂ_.‘ ‘.:...5._.;.” SRR R A R ._5@ L \k_-..‘\

ata 1ha"ate Al AN, AUapte g0 flo Rie A0 Sig Rad e BT ed fob Al B!

Chips Technical Report

3. Chips Structures

In this section the major components of the Chips system are presented: Domain Objects, Display
Objects, Picture Specifications, Substrates, Event Queues, Connections, Mechanisms, Event Streams,
and Display Streams. Finally, the strategy used for saving Chips objects is presented.

3.1 Domain Objects as Instances

Domain objects are instances of subclasses of the class DomainObject that combine the functionality

provided by Chips through inheritance, including: displaying themselves on the screen, animating
themselves, connecting themselves to other domain objects, defining their behavior in terms of other
domain objects, saving themselves to a file, and editing their behavior and properties interactively

3.1.1 Display Objects’ Graphical Data Structure

Each instance of a subclass of DomainObject defines one or more instances of the class DisplayObject

that determine how the domain object is to be displayed. The domain object itself corresponds to an
object in the application domain, while its display object determines how the domain object will
display itself on the screen. For example, in our digital circuit editor, there is a class of domain ohject
called LightBulb. It has display objects associated with it that determine how it will show up on the

screen, but the domain object instance itself determines the object’s behavior. It determines how to
process inputs, controls its display objects in response to inputs, and connects to other domain objects.

Each class of domain object defines one or more instances of display object. These display objects are
stored on the domain object class's IV, displayObjects as an association list of the form:

((tag, displayObjectinstance;). .. (tag, displayObjectinstance,))

Each instance of a domain object class stores one or more display objects in its displayObjects IV.
These display object instances are copies of those stored on its class’s displayObjects IV. Each display

object stored with a particular domain object instance is currently displayed on the screen. When a
display object is removed from the screen, it is also removed from its corresponding domain object.

Each display object defines a figure, mask, and map, stored in the IVs figure, mask, and map,

respectively. The figure and mask are used for displaying instances in a substrate and the map is used
for determining what part of an instance is located where, typically to see what part of a display object
has been selected with the mouse cursor.

Each display object also defines several other IVs including:

object — the domain object that the display object represents

host — the substrate instance that contains the display object
displayStream — the display stream the object is displayed on (usually whe window of its host)
position — the position in the display stream that the display object is located

editor — the editor that is used to modify the display object; usually an instance of the class
DisplayEditor

P B
P S

responsesToSelection — a form that determines the display object’s response to being selected with the

mouse cursor '.11

physicalConnectors — a list of the physical ceninectors associated with the display object B

-

5 L)

.:\:

~ o w T T ~r - - .':\

N Ot o A A N A o PO LT - SRR e AN
fr-&\.m'\"'\&ﬁ"' .A_h‘f.nﬂ.a} 0 e W

e va e dC L A B el

]
i Chips Technical Report
N
'
’
:}' The figure, mask, and each element of the map of a display object is stored as an instance of
<, PictureSpecification or some subclass of PictureSpecification. Each instance of PictureSpecification
has three IVs:

A\ displayRepresentation — the representation that is used to display the picture on the screen; the
N default display representation is a bitmap allowing for fast display using BITBLT
. editRepresentation — a representation that allows the picture to be edited, presumably in a more
>,
o convenient manner that the bitmap; the default edit representation is a list of vector graphic
- commands in a format that is recognized by the Display Editor
o offset — a position that describes the location of the picture specification relative to the lower left
~ . . oy s .
* corner of the display object it is stored in
r;‘-

.

Thus, the actual representations of the pictures are separated from the operations necessary for
displaying and manipulating objects on the screen. Each identical copy of a display object points to

:’_._ the same picture specification instances; new picture specification instances are only created as
o required due to local modifications made to a particular display object.
S0

Because Interlisp-D bitmaps are rectangular and have only one bit per pixel, it takes two bitmaps to
represent a figure with an arbitrary shape. One instance of PictureSpecification, the figure, defines

the way the display object will appear on the display; a second instance, the mask of the display object,
defines which areas of the display object are to be opaque and which transparent. The mask is black
only where the corresponding location in the figure is considered opaque. For example, a Smileface
display object might have the following figure and mask (see figure 1 below):

© ©
AN

(a) “ (b)
Figure 1. (a) The figure and (b) the mask of class SmileFace

Using this scheme, it is possible to display a figure of arbitrary shape on an arbitrary background. A
simplified version of the display procedure is to erase the area where the figure is to be placed using
the mask and then paint the figure. This process is illustrated in figure 2 below.

©

(a) initial background (b) after erasing the mask (b) after painting the figure
Figure 2. Procedure for displaying an display object

Chips does its painting and erasing on a separate bitmap and then paints the result on the screen to
avoid the flicker associated with erasing from the screen. This technique is called double buffering.

Note that this procedure does not constrain the figure to be closed nor composed of a single part.
Figure 3 shows the possible combinations of figure and mask and what will be displayed on the screen
with each combination.

. e . . B _.._-_,‘,‘... ,_._-.4..._\'._-.'~__-.--..'_._-..\'-\-~~ ‘-.;\-,- N

Figure 7 ==
i Design Z

Mask

Background

ohd L

i

LLE S NELLE 3“0 A

T NIL NIL S /7
.33:._.......4!. Gt

Figure 3. Displaying a figure with various masks on various backgrounds

TIIC WICS

The map is a list of elements that name the mouse-sensitive parts of the display object. Each element
contains an instance of PictureSpecification and a tag, a mnemonic way to refer to the map element.
The map is a list of the form:

(tag, PictSpecinst,
(tag; PictSpecinst;) (tags PictSpecinst;
(tagg PictSpecinsty . .]

The map is treated as a tree. The root contains the region that bounds the entire display object. The
root is followed by subregions that may in turn have subregions, and so on, that distinguish different
parts of the display object. To determine if a display object has been selected and what part was
selected, a depth-first search is performed on the map. The subregions are considered to be contained
in their region.

3.1.2 Multiple Display Objects and Multiple Picture Specifications

In Chips, there are two ways of representing various kinds of multiple display representations with a
particular domain object: multiple display objects and multiple picture specifications.

A domain object may have more than one instance of DisplayObject associated with it, providing more
than one view onto that domain object. This could be used, for example, with a business graphics
application, with a domain object representing gross receipts having a display object that displays a
number in one window, and a barchart representation of the value displayed in another window.

A display object may also have more than one set of picture specification instances associated with it
Each of the following [Vs of display object have a property, taglist, which stores information
concerning alternate picture specification sets and the display object’s corresponding behavior when a

-
{

e
AN

e 4"
L 2)

s SIS ASOEK A v S ¢ Y YIWRALLS,

Chips Technical Report

particular set is used: figure, mask, map, and physicalConnectors. The taglist property stores an
association list of the form:

{tagy form,) .. .(tag, form,))

that associates certain forms with corresponding tags. Each display object also has an [V, tag, which
stores the current tag being used.

3.1.3 Physical Connectors

Elements of a display object’s map may be physical connectors, establishing the subregion they define
to have special significance to another display object landing on that subregion. This can be used, for
example, to establish physical attachment between display objects. In our digital circuit editor, the
display object for the ANDGate domain object (see figure 4) has three physical connectors, two
representing the input leads of the and gate and one representing the and gate’s output. When one end
of a wire is placed on top of one of these physical connectors, the wire attaches to the associated lead.

Physical Connectors

4

—

Figure 4. Physical connectors for the display object of an ANDGate
Physical connectors are stored in the physicalConnectors IV of a display object in the form:
((PictSpecinsty position,) . . . (PictSpecinst, positiony))

where position is the position of the connector relative to the lower left corner of the display object.
This position is used to line up the display objects when establishing physical attachment between two
display objects.

3.1.4 Graphical Relationships

Chips provides several methods to determine graphical relationships between display objects and their
parts. These include methods to determine if a display object or one of its parts is above, below, to the
left of, or to the right of another display object or one of its parts. There are also methods to determine
if a display object or one of its parts intersects, is inside of, occludes, or obscures another display object
or one of its parts.

3.2 The Substrate

The class Substrate defines instances that create and manage windows for displaying and

manipulating display objects. A substrate senses mouse cursor activity within its substrate window
and determines what messages to send to itself or to the instances it contains based on the location of
the mouse cursor and the buttons that are pressed. '

Figure 5 below illustrates what a substrate looks like. There are two windows, a substrate window
and a prompt window. The substrate window has the title, “Substrate without a name.” The substrate
contains two display objects, one an abstract face, and the other, a text display object with the word
“Foo” contained in a box. Each display object that appears in a substrate represents some domain
object.

e b\ hhe bla 0 e el SRR sal fat Wl Bal U4 0oh ‘o a gt 0 W a aTate L i -

Chips Technical Report

oo

Prompt window —

Title bar
Substrate window S E T Background
\\\\\;:>‘\\ .
= Chip instances

Figure 5. A default substrate instance containing two display objects
Substrates define several I'Vs including:
fileComs — the name of the fila variable that describes the file that the substrate instance is stored on
fileName — the name of the file the substrate instance is stored on
window — the window that the substrate instance uses to display instances of DisplayObject
contents — a list of instances of DisplayObject that are displayed by the substrate

responsesToSelection — a form that describes the response to pressing a button while the mouse
cursor is inside the window

A substrate’s window stores its Substrate instance on its window property, Loopsinstance.

Substrates keep a list of the display objects they contain. This list is used to to redisplay the window,

to find the display object under the mouse cursor, and to save the display objects and their associated
domain objects to a file.

The substrate instance can also save a description of itself to a file that will create a window with the
same attributes when a file containing the description is loaded into the environment. Figure 6 shows
a substrate instance for which several of the parameters, such as the border size, background shade,
and title, were changed from their default values. Modifications made to the substrate instance
interactively can be saved and reproduced.

i

%

Figure 6. A substrate instance with parameters different from their default values

3.3 The Event Queue

In Chips, communication between individual domain objects is handled via an event queue. Each

communication is considered an event and is posted on the queue along with a time when the event is
to occur. The events are then processed in the order of the times declared. This allows events to be
handled asynchronously by a separate process. The event queue was initially developed to avoid the
problems of recursive function calling in complicated simulations [Duisberyg, 1986].

Event queues are implemented by the class ChipsAnima. Each instance of the class ChipsAnima has
two [Vs:

eventQueue — a list of instances of the record type, queueEvent, with associated time stamps, stored
as a skew heap

.

PR

P X A f\'{.'

CAL AN

LA

V‘.{‘:-'-,'l:".."‘(‘:4‘

N N AN

.

[N
P

.
»

.

Sl
v %

“e's

v+ v s
’

KA SRSy]

, @ l":":'i %S

“
N
X
|

n
~
]
-~
.
' -
'..:

2

rd

e

Chips Technical Report

eventQueueProcess — a process that continually polls the eventQueue IV to see if there is an event
whose time stamp indicates that it is time to be processed

When an event queue is established, a process is created that checks the eventQueue [V and sees if

the event on the front of the queue, if there is one, has a time stamp that has expired. [fthere is such
an event, the process sends the event queue the message ProcessEventQueue ui-at removes the event

from the event queue and sends the message ChangeOccurred to the instance stored in the participant
field of the queueEvent record with the associated parameters. The default event queue, Anima, is
created when Chips is loaded. When Anima is first used, a process is created, called Anima’s Queue
Handler.

The record queueEvent has several fields, including:
participant — an instance of the class DomainObject to whom communication is to be propagated
author — an instance of the class DomainObject that initiated the communication

name — an arbitrary tag that is the name of the communication; used to establish different
communication types and to communicate information relevant to the communication

value — a value associated with a particular communication

3.4 Connections

Broadly speaking, a workstation screen normally displays a diagram consisting of windows and icons.
Inside the windows are diagrams and text. Certain relationships are implied through what is
displayed. A facility in Chips, called a connection, can be used to make an implied relationship on the
display explicit for the computer. For example, if a window contains a road map, a line connecting two
dots might indicate that there is a road between the two cities indicated by the dots. The fact that a
road, displayed as a line, leads to a city, displayed as a dot, can be recorded in a connection between the
road instance and the city instance. When the user makes a connection explicit for an application
program, Chips causes the key relationships depicted graphically to be represented internally. Thus
diagrams on the screen can have a syntax and semantics that both the user and the program share,
and that both can manipulate.

Chips provides a class, Connection, whose instances represent relationships between instances of
subclasses of DomainObject. Each instance of Connection has three [Vs:

participant\nameList — a list of the form:
((participant, . name,) . . . (participant, . name,))

where name is some arbitrary tag used for establishing some connection type, or storing information
useful for the participants in a connection, or both; participants are instances of some subclass of
DomainObject.

responsibleObject — an instance that is responsible for propagating the communication from a
domain object to the participants in a connection; the default responsible object is the Anima

timeDelay — an integer which establishes a time delay in the propagation of the connection, if
non-NIL it is added to the current time before the event is placed on the event queue, thereby causing
the event to wait in the event queue until its time arrives; the time delay is expressed in milliseconds

Figure 7 shows the list of participants and names for an instance of PowerSource, from our digital
circuit editor. This power source .5 connected to an instance of the class Wire [n this example, the

10

Chips Technical Report

name is used to determine which physical connectors of the two participants are connected, the output
of the power source and one end of the wire.

Power

Ooff

((#3Wireda?3d Jutput . endPointl))
Figure 7. Connection between a power source and a wire

Connections store an object that is responsible for informing participants in the connection that some
change has occurred that is relevant to the connection; the default is the event queue. A time delay,

useful for simulations, may also be established for a connection and causes a delay before the
propagation of the change to the participant. Connections can be used to represent many kinds of
relationships between domain objects, such as physical attachment or containment.

The class ConnectionMixin provides the capability of connections to a class of domain object.

Connections are established between a domain object and other domain objects. Each instance of
DomainObject with connection capability stores a list of instances of the class Connection in an [V

called connections. When a connection is established for a particular domain object, an instance of
Connection is created and stored with that domain object.

When a domain object wants to propagate a connection, it sends the connection instance the message
AnnounceChange, either directly or by sending itself the message PutValueWithConnection or

AnnounceChange. The connection then sends the message ChangeQccurred to the instance stored in
its responsibleObject IV for each participant in the participant/namelist [V of the connection. The
message ChangeOccurred typically takes the parameters author (the domain object initiating the
communication), participant, name, value (the value that has changed), and time (the time that the
propagation is to happen, calculated by adding the value of the timeDelay IV of the connection to the
current time).

Figure 8 shows a simple circuit containing a power source and a light bulb. Note, in our digital circuit
editor, grounding is implicit.

Figure 8. A simple circuit showing connections

In this example, a connection has been established between the output of the power source and one end
of the wire. Another connection has been established between the other end of the wire and the input
of the light bulb. Whenever a change is made to the output of the power source, in this case turning it
on, the change is automatically propagated, through the wire, to the input of the light bulb, which
responds to the change by lighting up.

A A P 2% ot At S Mt AR A L L A A Bl Sl
'

amt

e, -‘-'.-'-

Chips Technical Report

The responsible object of a connection is, by default, the event queue. Another kind of responsible
object provided by Chips is a Spy. Instances of the class Spy may be installed as the connection's
responsible object and may be used to redirect connection changes or to do recording. By default, they
just beep when a connection announces a change, and then pass the message to the event queue.

When an instance of the class Spy is installed in a particular connection, the old value of the
responsibleObject [V of that connection is pushed on a stack on the [V property previousValues of the
responsibleObject IV of the connection instance. Removing a spy pops the stack, re-installing the old
responsible object. This provides an easy way to turn recording on and off during an application, for
example.

3.5 Mechanisms

It is also useful to represent the relationship between an object and its parts. The mechanism of a
domain object is a collection of instances of DomainObject, usually connected together, representing

that domain object’s internal mechanism. Through the connections, the collection of domain objects
can act as "the clockwork inside the clock.”

The class MechanismMixin provides the ability for a domain object to have a mechanism. It provides
IVs to domain objects including:

mechanism — a list of instances of subclasses of the class DomainObject which define this domain
abject’s behavior.

mechanismEditor — an instance of the class MechanismEditor, used to define and modify the
mechanism of a domain object

If a domain object class has a mechanism defined for it, whenever an instance of that class is to be
created, an isomorphic copy of the mechanism must be created, with all connections maintained.

Chips provides a Mechanism Editor to define and modify the mechanism associated with a particular
subclass of DomainObject. The class MechanismEditor is a specialization of substrate with behavior
that supports the definition of mechanisms. When the Mechanism Editor is opened, the mechanism of
the selected domain object is displayed along with an internal connector for each physical connector
defined for the domain object. Physical connectors provide access to the domain object’s internal
mechanism for other domain objects. These physical connectors are represented by instances of the
class InternalConnector. These instances set up a connection between the domain object’s external

connectors and its internal mechanism.

When a domain object with a mechanism is sent the message ChangeOccurred, it forwards the
message to the appropriate instance of InternalConnector, which in turn sends it to the domain object’s
that define the mechanism.

An example of the use of mechanisms is the class NANDGate, which was defined for our digital ~ircuit

editor. Itsdisplay object is shown in figure 9.

Figure 9. The display object of the class NANDGate

Display objects of the class NANDGate have three physical connectors, two on the left for input and one

on the right for output. The class’s behavior can be defined in terms of instances of two other classes,
ANDGate and NOTGate Figure 10 shows the mechanism of the class NANDGate

12

R N e T P L R N T TS

A pa et Nt b S

Figure 10. The mechar..sm of the class NANDGate

Each physical connector of the class NANDGate is represented by an instance of InternalConnector,
shown in figure 10. The Mechanism Editor automatically positions the instances relative to where the
physical connector appears on the domain object’s display object.

The user creates the mechanism for the selected domain object class by selecting instances of the
classes of domain objects that are to be included in its definition, dragging their display objects to an
appropriate position, and connecting them with wires. The mechanism may then be saved to the
domain object’s class by selecting the Save Class Mechanism option from the substrate menu.

When an instance of NANDGate is used in a circuit, it processes signals sent to it by sending them to

the instances defining its internal mechanism, via its internal connections. Figure 11 shows a
NANDGate domain object in action.

Figure 11. Example using the NAND Gate

3.6 Event Streams and Display Streams

Chips generalizes the input and output facilities of Interlisp-D to include object-oriented event
streams and display streams, providing a straightforward way of performing 10 redirection

Instances of the closs EventStream may be passed to some methods expecting input from the mou-~e or
keybhoard, such as the method for dragging a display object around the screen, providing direct contrl

oh Y -
NN

$5

13

90

el

ey

- LU I T N S s A N
AN ST T A T
" A’.f.:f-

P I I WA R I A

M
2
I
f 3
,
»
'
™
x

nP

-
X
.
%
>
Ea
o
E

Chips Technical Report

of the input from either the mouse or the keyboard. The default event stream is an instance of the
class EventStream, called Mouse, which polls the mouse each time it is asked to update itself. This

class can be specialized to get coordinates from a file, calculate coordinates based on some
pre-determined path, poll the keyboard, etc.

Instances of the class DisplayStream, likewise, may be passed to certain methods that expect a display
stream on which to perform output. One useful example of this is the class BufferedDisplayStream,

which, instead of doing output directly to the screen, does its output to a scratch bitmap and displays
on the screen when sent the message, Update.

Note: we have not developed display streams very much. They are included as a point of departure for
further exploration.

3.7 Saving Chips Classes

When a file that contains Chips classes is saved, certain values of instance variables and class
variables may need to be specially saved. Values such as bitmaps, instances, user-datatypes, arrays,
hash tables, windows, and circular list structures will not be saved correctly without special handling.
Chips defines several methods and functions that enable these kinds of values to be saved correctly.

For one of these values to be saved correctly, the instance or class variable that they are stored on must
have a property that designates them as special. The property name may be either Instances, Ugly, or
Horrible. If the property name is Instances, it designates some value of the instance or class variable
that it is stored on as an instance or a list structure containing instances. If the property is Ugly or
Morrible, it designates that some value of the instance or class variable that it is stor:-a on is some
other structure, such as a bitmap, user-datatype, array, or hash array, needs to be treated specially. If
a value is marked as Horrible, it may contain a circular structure; if it is marked Ugly, it may not.
Marking some value as Ugly results in a large speed and internal-storage advantage over marking it
as Horrible.

Each of these properties, Instances, Ugly, or Horrible, may have values that designate which values of
their instance or class variable are to be treated specially. If the value is Value, then the instance or
class variable value is treated specielly. If the value is All or Any, the instance or class variable value,

as well as any properties of the instance or class variable, are treated specially. If the value is some
other atom, it is treated as a property name, and that property of the instance or class variable is
treated specially. The value may also be a list containing any of the above values.

When a file containing Loops classes is saved, each class is sent the message FileQut to save itself to
file. Chips specializes this method, in the metaclass UglyMeta, so that it checks each instance and
class variable to determine if any of its values are to be treated specially. When a Chips class (any
class which has ChipMeta as its metaclass) is sent the message FileOut, the message is intercepted by
UglyMeta (a super class of ChipMeta). This method calls the function AddinstancesToFilevar, which
saves all values designated by the Instances property to the file variable of the file being saved. It then
encodes all values marked by the Ugly or Horrible property by printing their values to a core file, using
HPRINT, and reading them back in, using BIN, and constructing a string representation, which is then
saved to the file.

When these files are loaded, the values marked as Ugly or Horrible must be converted back to their
original representation. This is done by printing the values to a core file, using BOUT, and read from
the core file using HREAD

14

‘ -

I I I R T VAT AL AL AL AE S 8. PO S S R S I A Al P UL WS, W v

P LA L G Gt gl Sl Vel Bl N P N

o,

Chips Technical Report

4. Chips Interactive Environment

Chips provides a powerful environment for interactively creating and modifying direct manipulation
interfaces. There are two paths for developing applications that use Chips. They can be used
interchangeably as convenience suggests. The first is through a Chips Browser. This browser

provides: access to the class definitions, editors for specific properties of classes, and access to the
taxonomic hierarchy of the classes of an application. The second is through the application’s own
interface. There are a number of features that support direct access through the interface to
underlying data structures, functionality, and specific properties of an interface. This section
summarizes the features of the Chips interactive environme-t.

4.1 Chips Icon

Both paths of interaction are accessible through the Chips Icon. When Chips is loaded, the Chips Icon
appears on the screen (see figure 1).

i Left button: "Drag the icon"
Middle button: "Chips options”
Right button: "Window options"

Figure 1. The Chips icon and its mouse button options

Selecting the Chips lcon with the middle button presents a menu of Chips options, Create a substrate,
Browse a file, Browse Saving Options, and Edit Chips Icon.

Selecting Create a substrate creates a new instance of the class Substrate and sends it the message
Initialize which prompts for a region of the screen to display the new substrate.

Selecting Browse a file presents a menu of all the files on the system variable FILELST. Selecting a file
name from this menu creates an instance of the class ChipsBrowser that shows all of the classes
defined by that file. This browser may then be accessed interactively. This option has a submenu
associated with it with one selection, Browse object dependencies. Selecting this option presents a
menu of all files on the system variable FILELST. If a file name is selected, a browser of that file is
created, displaying the file name and all objects that are stored on that file's variable (see figure 2).

Ghips Object Dependencies Browser
(Joe

CHIPSTOYS {;_-'3 retchen
*DemoDomainOb ject

Figure 2. A browser showing the objects pointed to by the file CHIPSTOYS

In this browser, nodes representing file name are display in bold font with a two pixel border around
the name, class names are displayed in bold font without a border, and instances are displaved in a
regular font. Each node has several options available by selecting the node with the middle mouse
button pressed. These options are shown in figure 3.

WWNMWFJWFJ‘JU T A WU s R T e T T

Chips Technical Report

Describe
E it
Chips Object Dkl
E «tend
/9uUnExtend
CHIPSTOYSJ‘.:‘G:‘& Chen

“DemoDomainCb ject

ies Browser

Figure 3. Options available from the object dependencies browser

Selecting Describe from this menu prints information about the selected node including what kind of
object it is and what files it is stored on.

Selecting Edit from this menu invokes the Interlisp-D editor DEdit on the definition of the object
associated with the selected node.

Wi JSYPREXLA Y EFEAs LSSl Ly e Sl

%

Selecting Inspect from this menu creates an Interlisp-D inspector, inspecting the object associated
with the selected node.

L
a_ s ALA

Selecting Extend from this menu extends the browser to include objects pointed to by the selected node.

-

Selecting UnExtend from this menu removes all objects pointed to by the selected node from the
browser.

Selecting Browse Saving Options from the Chips Icon middle button menu presents a browser of saving

options that controls what actions are to occur when certain events occur during the use of Chips. This
browser is shown in Figure 4.

Chips Saving Options.~=» -
When Created
: When Named
: When Added to Substrate
. When Edited

% Prornpt for Name
?A Generate Name

Prornpt for File
File in Default File
File with Substrate
Mark as Changed

.-!’ Oo Nothing

Figure 4. The Chips Saving Options Browser

The grid in the browser allows the user to control what actions are to occur at specified events during
the use of Chips. The events are listed, horizontally, at the top of the browser while the actions to take
in response to these events are displayed vertically, to the right of the grid. Responses that are
mutually exclusive are grouped with a vertical bar connecting the mutually exclusive responses.

P

, P I L P A A T A AT, S s L I A N T
" W . .

e A AT AT AT AT A e TN AT N
P R A N NI N I AN NN A

o ata A’a Ala Ata fte Ala Ala alahie’ala’dte gl 4t gia'aty ot ate by ataal gty gt atotatoatosate gl ate Ale giugle Ao Alaalacibe ale dlo Al hios Al Ale Al Aindiie Al diadia A0 dnai
Chips Technical Report

The four events that are controlled with this browser are: When Created, When Named. When Added
to Substrate, and When Edited.

When Created — whenever an instance of the class DomainQObject, DisplayObject, Substrate or any of
their subclasses is created and initialized, the selected responses occur.

When Named — whenever a instance is named while using Chips, the selected responses occur.

When Added to Substrate — whenever a display object instance is added to a substrate, the selected
responses Occur.

When Edited — whenever an instance is edited through a Chips menu, the selected responses occur

The responses that are controlled from this browser are Prompt for Name, Generate Name, Prompt for
File, File in Defauit File, File With Substrate, Mark as Changed, and Do Nothing.

Prompt for Name — asks the user to enter a name for an object.
Generate Name — generates a name for an object using GENSYM and the class name of the object.
Prompt for File — asks the user to select a file in which to store the object.

File in Default File — stores the object in the default file, if the object is a class, it is stored in the file
CHIPSCLASSES, if it is an instance, it is stored in the file CHIPSINSTANCES.

File With Substrate — stores the object, usually a display object instance, in the same file as the
substrate it is displayed in.

Mark as Changed — marks an object as changed so that it will be recognized by the file package.

Do Nothing — does nothing in response to the selected event.

5,1 0,

Selecting the option Edit Chips lcon invokes the Interlisp-D editor, DEdit on the class Chipsicon.
4.2 The Chips Browser

Chips provides a graphical browser for a class hierarchy of Chips classes that supports the creation
and management of Chips files. It is called the Chips Browser (see figure 5).

Iaje]

internaiConnector

. Cockroach

_.— Libro
OomanObject &7
- Derno0omamObject
ElderDomObi
MechanismBancerDomObi

Figure 5. A Chips Browser

This browser provides a graphical display of the portion of the class inheritance lattice that is defined
by a particular file. Selecting the name of a class with the mouse produces a menu for editing different
aspects of the selected class.

This browser is a specialization of the Loops class FileBrowser The Loops browser provides options
that allow the interactive creation, modification, and examination of classes (see figure 6)

N

LA

PR R At ettt e et N W
e T T T e T e e L - -

.

: ’s‘f *”' ,."I -l’. -.

‘I'.;J

‘e

Chips Technical Report

CHIPS file brawser— - - -

Chipsicon
Chipimage « N

BoxMode

Methods (EditMethoct) »

Add (AaadMarnod: »)

Detlete (Dejeteplathiog) ¥ , .
Move (MovehMethoaTo) 2 TEditChip
Copy (CopyMerhodToy

Rename (Ranamefathod)?
(Edit_lase) ;

* FooChip

' lrnagePlaneChip

Figure 8. Browser options provided by the Loops file browser

In addition to these, we have added options specific to chips classes. These options are shown in figures
7and 8.

Specialize
AddNewMethod
SpecializeMethod

Add Display Object

Add Connection Capability
Add Mechanism Capability
DefRSM

AddSuper

BoxNode AddNewlV

Methods (EditMethod) MNAddNewCV

Add (AddMethad New

Deiete (DeieteMethod)
Move (MoveMethadTo) M

W11 CoPY (CopyMethodTo) 75

Rename (RenameMethod)?
UEE git (EditClass)

Figure 7. Options available from the Add (AddMethod) submenu

BoxNode
Methods (EditMethod) »
Add (AddMethod)

Deiete (CeleteMethod)
Move (MoveMethodTo)
Copy (CopyMethodTo)
Rename (RenamaMethoo)
Edit (EditClass)

Edit
Edit!
Inspect
Edit Display Object

Edit Response To Selection
4E it Mechanism

Figure 8. Options available from the Edit (EditClass) submenu

There are several options that are specific to Chips, all to be used with subclasses of the class
DomainObject, including: Add Display Object, Add Connection Capability, Add Mechanism

Capability, Edit Display Object, Edit Response To Selection, and Edit Mechanism.

Selecting Add Display Object creates an inspector that allows the user to define the new display object
that will be added to the selected domain object class. This browser is shown in figure 9.

DemoDomainObject DisplayObject Specifier
Taqg NIL

Class DisplayObject

figure PictureSpecification
mask PictureSpecification
map PictureSpecification

Figure 9. The Display Object Specifier

Sl A A A i B ekl e A el ek ket

Chips Technical Report

Using this inspector, the user may specify the class of display object that is to be added to the selected
domain object class along with the tag that will be used to refer t. chat display object and the classes of
picture specification that are to be used for the display object’s figure, mask, and map. When the
display object is specified, it may be installed in the domain object class by selecting the inspector’s
title bar with the middle button pressed and selecting Install from the menu that appears.

Selecting the option Add Connection Ability establishes connection capability for the selected domain
object class. When this option is selected, Chips attempts to add the class ConnectionMixin to the
supers list of the class. This is done by sending the class the message InstallSuper, which is defined by
the metaclass AddSuperMeta. This method expects that either the class or one of its super classes has

a CV that has the same name as the super class to be added. This CV should have two properties:
fileName, which stores the file that the super class is stored on, and selectors, which stores a list of the

messages that the super class implements. InstallSuper asks to make sure that the user wants to add

the super to the selected class. If so, it checks to see if the file that implements the super is loaded. by
sending the class the message FileLoaded?. If the file isn’t loaded, it will load it. [t then installs the

super in the super list of the class, copying any [Vs with a property copyDown that has a non-NIL
value.

In addition to explicitly requesting that a capability be added, if any message is sent to a domain object
instance that it does not understand, Chips checks to see if the message is one that would be

understood if a certain super were added to the supers list of the domain object. This is accomplished
with the AddSuperMeta class and the method DomainObject. MessageNotUnderstood. If a message is

sent to a domain object that it does not understand, the message MessageNotUnderstood is sent by
Loops to the object, which, in turn is intercepted by DomainObject.MessageNotUnderstood.
MessageNotUnderstood sends the message NewSuperSelector? to the class of the domain object. This
message is implemented by the class AddSuperMeta and looks at the domain object’s class for a CV
that has a selector on its selectors property that matches the message that was sent to the domain
object. If such a CV exists, the message InstallSuper is sent to the Domain object’s class.

Selecting the option Add Mechanism Ability establishes mechanism capability for a class of domain
objects. When this option is selected, Chips attempts to add the class MechanismMixin to the supers
list of the domain object’s class. If the class MechanismMixin is not loaded, Chips will ask the user
whether to load the file MECHANISMS which defines the classes, instances, methods, ete, that are
required to establish a nechanism. MechanismMixin is then added to the supers list. This is done
following the same proceu ire described above for ConnectionMixin

Selecting the option Edit Disnlay Object allows the user to define how instances of a domain object class
will display themselves in a substrate. When this option is selected, it presents a menu of all display
objects defined for the selected domain object class. If a displav object is selected the display object is
then edited, using the Display Editor If the selected display object has an instance of the class
DisplayEditor stored in its editor [V, that display editor is opened If not, a new instance of the class
DisplayEditor is created, stored in the editor IV of the display object. and opened In this case,
selecting Exit while using the Display Editor updates the display object associated with the domain

object class, so instances created from this class will subsequently reflect the changes made during

NN e T
Py, A

editing The Display Editor is discussed in detail at the end of this section
Selecting the option Edit Response To Selection allows the user to define the response to selecting a °
particular display object with the mouse cursor while that display object is displaved in a substrate ::'i
When this option s selected, a nenu of all display objects defined for the <elected domain object s ‘:j
S
X
19 '

A
R

AR I

e N R M SRa lite VA FNAE 0 Mot AUt ol e e

»

~

o’

Chips Technical Report

ARSIy

presented [f ane .s seiected. “he [nter:isp-D editor DEdit is invoked on the form that describes that
d13Dldy JnIect 5 response o se:ection

. “l"'

Seiecting the option £¢:1 Mecranism aiiows the user to edit the mechanism associated with the
seiected <.ass of domd.n aotect Mecrnanisms provide a way to describe the behavior of a class of
domain objects .n "erms of .nstances of Kther ciasses of domain objects, as described above.

When this option .5 <e.ected "ne gser .5 asked to sweep out a region of the screen to display a
substrate, ca..ed ‘ne \lec~a~ <« Zg.'or The Mecharmism Editor will contain the class’s mechanism, if
one 1s detined

An option has been agdeg o 'ne ‘it.e bar menu of the Loops FileBrowser: Add New Class Selecting
Agd New Class and siding 0 the right see Figure 10) presents a menu of Chips classes that wiil
frequently need to be spec:aiized. providing a straightforward way of creating new specializations and-
associating them with a particuiar file When a class is selected, the user is asked to type in a name for
the new specialization, which :s then created. having the selected Chips class in its supers list. When a
Chips class is specialized, all [Vs of the specialized class that have a property copyDown set to a
non-NIL value are copied along with their values to the new class. This is accomplished using the
metaclass CopyOnSpecialize with the method Specalize This method is a specialization of
Class.Specialize

Recompute »
AddRoot

SaveValue
RemoveFromBadList
Change display mode
Add file to browser
Seject File

EaitFile Coms

Edit Functions
Editinstances

pecialize Damain Qbject -
Specrahze PictureSpecificaton
Specialize DispiayObject

Edit variab!e Specialize Substrate
Hardcfpoy file Spedialize EventStream
Save file Specialize Connection
Add New Class Specialize Spy

FooChip

Figure 10. Creating a specialization of a Chips class from the file browser.

4.3 Modifying an application through the development interface

This section will discuss a) how a substrate manages the display of multiple, overiapping display
objects and b) the editing options available by selecting substrates and display objects.

4.3.1 Displaying overlapping display objects

To support the display of multiple, arbitrarily shaped display objects in a substrate, Chips creates the
illusion that display objects overlap one another, as though the screen had depth and some display
objects were closer to the viewer than others. This overlapping is essentially 2 1/2 dimensional. That
is, there is no sense of absolute distance between the display object and the viewer, only that certain
display objects are closer to the viewer than those that they overlap. Chips provides a sense of relative
depth, not absolute depth.

-’
»

-5

Each substrate instance stores a list of the display object instances it contains in the [V contents.
They are stored in order, so that the topmost display object is on the front of the list. Each display

- “BAS.A 8 a'% 2 8.8% “oat

Ao it e e s St A D ARAL A WL KO W W Ta T, W, R g JAat o)

Chips Technical Report

object stores an ordered list of the display objects that it overlaps in an [V, occludedByMe, and an
ordered list of the display objects that overlap it, in an [V, called occludesMe. When a substrate
instance redisplays its window, it clears the window, and traverses its contents in reverse order,
sending each display object the message Draw. As mentioned in Chapter 3. display objects can be
irregularly shaped and may have holes in them.

When a display object is to move, it is sent the message PrepareToMove which, in turn, sends the
message DrawUnder, drawing all display objects that overlap the display object to a scratch bitmap. It
then removes itself from all occludesMe and occludedByMe [Vs of the overlapping display objects, and
finally removes everything from its own occludesMe and occludedByMe [Vs.

When a display object is placed in a substrate, it checks to see which display objects it overlaps and
updates itself and them accordingly, with the message InformThoselLandedOn. [t also puts itself on

the front of the substrate's contents [V, sending the substrate instance the message Addinfront.

Occlusion is maintained with respect to selection of a display object with the mouse cursor. When a
mouse button is pressed while the mouse cursor is in a substrate’s window, the window’s
BUTTONEVENTFN is called. The default BUTTONEVENTFN in Chips is ChipsEventFn. This function

sends the window’s substrate instance the message GetObjectAt, which traverses the contents [V of
the substrate, in order, sending each display object the message OnYou? with the coordinates of the

mouse cursor selection. If a display object was under the cursor, it is returned, otherwise the substrate
instance itself is returned. The instance that is returned is sent the message RespondToSelection.

The RespondToSelection method sends the selected instance the message GetPartAt with the
coordinates of selection. The method GetPartAt traverses the object’s map and returns a tag,
indicating what the cursor was over when the mouse button was pressed. The RespondToSelection
message then looks at the eventResponses [V of the object to determine what to do in response to the
selection. The eventResponses [V stores a list of triples of the form:

(part howSelected whatToDo)

part is the name of a part of the instance, howSelected indicates the type of selection and is usually a
type of button, such as LEFT or MIDDLE, whatToDo is either an atom in which case it is treated as a
message name and is sent to the selected instance, or it is a form that is evaluated.

In addition to being arbitrarily shaped, display objects do not have to be entirely solid. [t is possible to
define holes in the middle of a display object. This is also supported both visually and with respect to
selection with the mouse cursor.

Figure 11 shows a substrate with three display objects: the display object of the class ChocolateChip
which looks like a chocolate chip cookie, the display object of the class FooChip which looks sort of like
the man in the moon, and the display object of WasherChip which has a hole in the middle

[

o1

PA

. v

'l’. ;l AL v

v -'}.'J .I 't' "' -:.

o ey
* e

.
.
o)

« .
[AN

.
G Ts ta

2
-

¥

. e,
1 3
o '.. PR

v e

7o IR

7.

plt

>
»

L L e e T e e e ~ '.‘;*\‘_-. .'.{.
W, T “.-_}D.",'.':‘-'f ‘\.’.ﬁ".’.i’h‘:‘. .."‘:'h{h“- ‘;u_‘;j

Chips Technical Report

Figure 11. A substrate with three overlapping display objects

In this figure, the WasherChip overlaps the ChocolateChip which in turn overlaps the FooChip. The
ChocolateChip is partially occluded by the WasherChip but can be seen through the hole in the
WasherChip. Selection of these display objects with the mouse cursor exactly corresponds to their
visual representation in the substrate. Selecting the part of the FooChip that is not occluded selects
this display object. Selecting any part of the WasherChip's display object selects it. Selecting any part
of the ChocolateChip that can be seen, including the part that is seen through the hole in the
WasherChip, selects it.

Substrates keep a list of the display object instances they contain. This list is ordered by depth; the
front-most display object instance is first. To redisplay the substrate window, the list is traversed in
reverse order so that the front most display object is displayed last. Thus, overlapping display object
instances give the illusion of depth as display object instances closer to the front occlude display objects
behind them. To determine which display object instance the mouse cursor is pointing to, the list is
searched in order. Thus, if display object instances overlap one another, the one closest to the front is
found first.

4.3.2 Interactive editing of display object instances

By default, Chips provides a number of options available through a display object on the screen. To
perform some operation on a display object or its associated domain object, the user merely selects that
display object with the mouse cursor. This section will discuss the default options that are available
for interacting with display objects and domain objects through their pictures on the screen.

The default response to left button mouse selection of a display object is to send that display object the
message Animate, which picks it up, attaches it to the mouse cursor and allows it to be dragged around
the screen. When a display object is picked up, it first comes to the top of whatever display objects may
have been overlapping it. It then follows the mouse cursor around the screen until another mouse
button is pressed. When a display object is put down, it will, by default, overlap any display objects
that are occupying the region it is placed in. Display objects may be dragged from one place in a
substrate to another or placed in any open substrate on the screen.

Dragging maintains the illusion that the user is actually manipulating the objects represented by a
particular display object. The dragging animation is very smooth with no flicker and does not
obliterate the screen.

The method that implements dragging is called Animate. Animate provides hooks for redefining what

happens when dragging a display object. To use these hooks, the user needs to specialize one or more
methods for a new class of display object.

Chips provides several options for editing the properties and behavior of a display object and its
associated domain object. These are available by selecting a display object with the middle button and

22

y W W R Ly W T T T T TR T T e s

:
;
E:
;

-
.

Chips Technical Report

choosing the editing option from a menu. When the middle button is pressed. the displayv object is sent
the message OfferEditOptions, which presents the menu of options. These options are acquired by
appending the results of sending the display object and its associated domain object the message
GetEditOptions. These options are roughly grouped into four categories operations involving the
display object’s properties and behavior, operations involving the associated domain object’s properties
and behavior, operations involving the connections of a domain object, and operutions invelving the
domain object’s mechanism. Figure 12 shows the menu of editing options available for the display
object of an instance of the class MechanismDancerDomOb;.

(C-eh:-t-:- Froem Sub strate

bhzsee to A specific poaition

Crag Cizplay Tbject

npestCusplay Tbhpect

Edit Cizplay Feprezertationr

Edit Fezponse 53 Ieection

SRVl Ok o T-:'g

Plarme Cozplay 2Dyt

E to Tnzplay Topect
PAak e Method Mero for Cizpia s st

Mame Dornairn Tject

Switch Diepiction

Inspect Diomain Jigpect

‘@Send mes3age to Criomain Jbject
Connect !
Deastroy Al Connections

V@/// / o AE dit Conmections ’
¢///// = HMEdit A Zonnection i
%4/ Sance 10elete 2 Zonnection
" . .. 2 ‘
774 Bance ¥ _ ‘
A € dit blecharism |
/'{’/7”’ 7T A

Figure 12. The editing options menu for an instance of MechanismDancerDomOb)

Editing options involving display objects

There are ten options that support editing the properties and behavior of display objects Delete from
Substrate, Move to a specific position, Drag Display Object, Inspect Dlspla‘y Object, Edit Display
Representation, Edit Response to Selection, Switch Tag, Name Display Object, Send Message to
Display Object, and Make Method Menu for Display Object.

Selecting the option Delete from Substrate deletes a display object from the substrate in which it is
displayed, by sending the display object the messae DeletefromSubstrate Deleting a display object
erases it from the screen, displaying any display objects that it overlapped, maintaining, in turn, their
overlapping with other display objects in the substrate. It also removes it from the displayObjects IV
of its associated domain object instance.

Selecting the option Move to a specific position allows the user to specify coordinates within the same
window where the display object is to be moved The user is prompted to enter the x and y coordinates
for the move, using the Interlisp-D function RNUMBER, and the display object then removes itself from
its current position and relocates in the position indicated by the entered coordinates, sending itself
the message Move.

23

ST g™ ‘.—\";v.-;‘.', R SRS T S DR S

Chips Technical Report

o~

N

Ao

::' Selecting the option Drag Display Object sends the message Animate to the display object, allowing it
X to be picked up and dragged around the screen. Dragging is described in detail above Selecting this

option is the same as selecting the display object with the left button
A’ Selecting the option Inspect Display Object invokes the [nterlisp-D inspector on the selected display
"'..:C object instance. The inspector is window-based and allows the user to examine and modify the

properties of a particular instance of a display object class. Figure 13 shows an inspector for the
display object of an instance of the class SquareChip

All Valuves aof DisplayOhiject $SquareDisplayOb jectGopy0023

f1leName NIL

firleComs NIL

fullF1 e NIL

occ ludesByMe {#3MoveawayD1zplb)CopyYRLS

occ lude stte NIL

display3tream {WINDOW}#377,5234

event3tream NIL

figure 23Squarelisplaylb)ectCopyIR23F 1qure
mask #33quarefisplayQbjacrtop ;332 3Mazk
map (#8Squara013playQbiecttopydll iMapdyl
position (22 . 38)

host, #2%(Substrare (255 . 16243))

object 2353uareChi1pd@22

editor NIL

responsesToSelectron ((map LEFT Animate) (map MIOOLE Qff«
physicalConnecrors NIL

Figure 13. The inspector

Selecting the option Edit Display Representation invokes the Display Editor on the selected display
object. The Display Editor will be discussed in detail below.

Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that
defines the display object’s response to selection with the mouse cursor. The form is a list of triples,
each consisting of the name of a map element of the display object, a type of mouse selection (usually
either LEFT or MIDDLE), and the action to take in response to selecting the particular map element
with the particular type of mouse selection. If the action is an atom, it is treated as a message name
that is sent in reponse to the particular combination; otherwise it is treated as a form to be evaluated.
The user may alter elements, add new elements, or delete existing elements from the list, altering the
display object’s response to selection with the mouse cursor. Figure 14 below shows the response
description form for the display object of a MoveAwayChip.

((map LEFT Animate)

{map MIDOLE OrferEdrtdptions)

(center MIOOLE (+ self Animate (3 WinEvent3tream:
{3 winDispStream)))

Figure 14. The response description for a display object

Selecting the option Switch Tag allows the user to switch the set of picture specification instances that

are used to display the selected display object. When this option is selected. a menu of all tags
associated with the selected display object is presented. If a tag is selected from this menu, the new

Chips Technical Report

picture specification instances are swapped in, becoming the new values of the figure. mask. und map
1'Vs of that display object.

Selecting the option Name Display Object allows the user to give some easily remembered name to u
particular display object instance.

Seiecting the option Send Message to Display Object allows the user to send the selected display object
a message. When this option is selected, the user is prompted to enter the name of a message in the
sukstrate’s prompt window. This message is then sent to the display object, executing the associated
method.

Selecting the option Make Method Menu creates a menu of the methods associated with the selected

display object’s class. This menu may then be used to edit particular methods with the Interlisp-D
editor.

Editing options involving domain objects

There are four options that support editing the properties and behavior of a display object’s associated
domain object: Name Domain Object, Switch Depiction, Inspect Domain Object, and Send Message to
Domain Object.

Selecting the option Name Domain Object allows the user to give some easily remembered name to a
particular domain object instance.

Selecting the option Switch Depiction allows the user to switch display objects for a particular domuin
object. When this option is selected, a menu of the display objects associated with the selected domain
object’s class is presented, by sending the domain object the message AskDepiction. Seiecting on.- of
these sends the display object the message ReplaceDepiction, deleting the current display object and
substituting the selected display object in the substrate at the same position. Figure 15, shows a
sequence of three substrates that demonstrates changing the display object of an instance of
DemoDomainObject.

A Substrats Window - __

~ - L e e
B N ¥ @ .

L3R}

LT

Figure 15. Changing the display object of DemoDomainQObject

Selecting the option Inspect Domain Object invokes the Interlizp-D inspector on the domain object
instance associated with the selected display object. The inspector i5 window-based and allows the
user to examine and modify the properties of a particular instance of 4 domain object class

Selecting the option Send Message to Domain Object allows the user to send a messaue to the domain
object instance associated with the selected display object. When this option iz selocted, the user is
prompted to enter the name of a message in the substrate’s prompt window This meszage i< then ent
to the domain object, executing the associated method

Editing options involving Connections

If the domain ohject associated with the selected display object has connection capabuing . Toe optns
are availuble from the editing option~ menu that support creating and mamtaimin s o e -

XA v, (.. ‘<, '.n

N AL

ST)
v fe hy T
. .

.

A

CRA RN
a8

=

Chips Technical Report

between domain objects: Connect, Destroy All Connections, Edit Connections, Edit a Connection, and
Delete a Connection.

Selecting the option Connect allows the user to interactively add a new connection for the domain
object associated with the selected display object. When this is selected, the user is prompted to enter
the name of the new connection and to select the participant in the connection The connection is then
established.

Selecting the option Destroy All Connections deletes all connections currently established for the
domain object associated with the selected display object.

Selecting the option Edit Connections allows the user to edit the connections of the domain object

associated with the selected display object. When this is selected, the Interlisp-D inspector is invoked
on the instances of Connection currently defined for the domain object.

Selecting the option Edit a Connection allows the user to specify a particular instance of Connection to
be edited. When this option is selected, 2 menu is presented of all participants involved in connections
with the selected domain object. [f one is selected, another menu of the names of all connections that
the selected domain object and the selected participant are involved in. If both participant and name
are specified, the Interlisp-D inspector is invoked on the instance of Connection indicated.

Selecting the option Delete a Connection allows the user to interactively specify a particular
connection to be deleted. Specifying the connection is done as described above for Edit a Connection.

Once a connection has been specified, this connection is deleted from the domain object associated with
the selected display object.

Editing options involving Mechanisms

If the domain object associated with the selected display object has mechanism capability, an option is
available from the editing options menu that supports creating and maintaining the domain object’s
mechanism: Edit Mechanism. Selecting the option Edit Mechanism enables the user to edit the

mechanism that determines the selected domain object’s behavior.
4.3.3 Options available by selecting a substrate

Chips provides a number of options that are available by selecting a substrate window. These options
allow the user to interactively examine and modify important properties of substrates.

New instances of domain object classes can be created and their display objects displaved in a
substrate by pressing a mouse button while the mouse cursor is in the background of a substrate
window. When the background is selected the message OfferNewDomainObject is sent to the
substrate instance. This method presents a menu, by sending the substrate instance the message
AskDomainObjectClass, which contains the names of all the classes of domain object currently defined
in the environment. If one is selected, an instance of that class is created and sent the message
Initialize. [f there is more than one display object for the selected domain object, a menu of the display
objects is presented. If there is only one display object for the selected domain object, that one is used.
The display object is then displayed in the substrate’s window When new classes of domain object are
defined, they are automatically added to the substrate's background menu. Figure 16 shows the
response to selecting in the background of a substrate

26

R’ "aa"at, 'a te R e Sy el e Bl e N, Bl i S B L

[4 0t ail At d AR £ tad ao et it 000 bat dat tar ettt i te gt gie g g ot g AR R bt bl tah Sl it S At el e Ao A AR A R

Chips Technical Report

Chacolate b

E-'rected'-f-rn-e':mo‘

Cougnnur b

Foolhip

FarmZrap

W imageFtans g
gL b2z

mu-ghtal_ub
oIt 3ate
oraate

PinChip |
PowerSource -s-
Straightwire ”hip —_ Pp—
TEAtZhip ___]—_é_-[
YanillaZlhip
WireZhip

Figure 16. The background menu of a substrate

Pressing the left mouse button while the mouse cursor is in the title bar of a window, sends the
associated substrate instance the message OfferEditOptions, presenting a menu of editing options that
allow the user to examine and modify important properties of the selected substrate These options are
shown in figure 17.

Load ‘
Collect new in3stances
Browse Dependencie ‘
Tave contents .
im3pect

Edit Re3ponae to Tel2ction
Zlear Substrate

Mame

Figure 17. Title bar options of a substrate

Selecting the option Load allows the user to load a group of display objects from a file into the selected
substrate. When this option is selected, the substrate is sent the message Load, which prompts the
user to enter a file name. If a file name is entered. the file is loaded into the environment and display
object instances stored on the file are displayed in the substrate's window

When an instance is loaded that has a value that is marked as Ugly or Horrible, such as a bitmap, it is

necessary to convert this from the form that was used to save it When an instance is loaded tfrom a

P

/

A A T T 2 S g)
P33 L BACXAACANA W/

" e

b
-~
La

SR

g CfM

e '.- f- ..I,

P

L.

PP AP AL S A A N, P S I R AR M ARSI P L LA, YL P PP O GOUI G VWOV PV e TN 9 9SG Yo

Chips Technical Report

file. the function DEFINST is called to create the instance DEFINST sends the message Old!nstance "o

the instance after it is defined. Classes whose instances may have such values stored in some [V or [V
property have a super called UglyMixin. UglyMixin specializes the method Oldinstance to check the

new instance for values marked as Horribie or Ugly.

To designate that a particular value is Horrible or Ugly, the [V containing the value shouid have a
property Horrible or Ugly, which may have as its value one of the following: Value, which designates
the IV value as the ugly or horrible structure, All or Any, which designates that the [V value and all of
the IV's properties have a structure that is horrible or ugly, a property name, which designates a

specific property as horrible or ugly, or a list containing any of the above values I[f a value is
designated as Ugiy, it is assumed to not have circular structures; a value that is marked as Horrible

may have circular structures. Marking something Ugly reslts in a large speed and internal-storage
advantage over marking it as Horribie. When a horrible or ugly value is encountered, the method
UglyMixin.OldInstance decodes the value by using BOUT to write the value to a core file and then
reading it from the core file using HREAD

After each instance is read, its host IV is set to the substrate it is loaded into, its displayStream [V is
set to the substrate's window, and each instance is added to the contents IV of the substrate The
window is then redisplayed.

Selecting the option Collect new instances allows the user to associate the substrate and all display
objects it contains with a particular file, placing all instances on the files file variable When this
option is selected, the user is asked to specify a file to save the substrate and its display objects on
These instances are then added to the file variable of the specified file.

Selecting the option Browse Dependencies creates a browser window with one node representing the

substrate. This node can then be expanded further to examine the objects pointed to by the substrate.
This can be useful to discover exactly what will be saved to a file when the substrate is saved.

Selecting the option Save contents allows the user to save the display objects cortained in the selected

substrate and their associated domain objects to a file. When this option is chosen, the user is
prompted to enter a file name to save to. If one is specified, the contents are saved to a file. They may
be loaded into another substrate later using the Load option. Saving display object instances mean.

that picture specification instances must be saved as well Since picture specification instances
typically have bitmaps as values of their instance variables, these values will need to be encoded
oefore saving them to a file. This is accomplished by the method UglyMixin FileOut. FileQut is a

specialization of Object.FileOut which encodes values that are marked as Ugly or Horrible [t does this
by writing the values to a core file with HPRINT and reading them in using BIN and converting them to

a string before it prints them to a file. Classes whose instances may store these values, such as
PictureSpecification, have UglyMixin as a super class.

The Save contents and substrate option is available by selecting the Save contents option, sliding to

the right, and selecting it from the submenu that appears. The user will be prompted to enter a file
name. Ifone is specified, the substrate and all of its contents will be saved to the file. When this
option is selected, a description of the substrate’s window is also saved to the file so that the window
can be recreated with all its properties intact.

Selecting the option Inspect invokes the Interlisp-D inspector on the selected substrate’s instance

Selecting the option Edit Respanse to Selection invokes the Interlisp-D editor DEdit on a form that
defines the substrate’s response to selection with the mouse cursor The form is identical to the form

28

Chips Technical Report

described above for display objects. Figure 13 below shows a sample response description form for a
substrate.

AT tedrBorder LEFT OrfferE rr opronia
(Tatledrdorder MIDOLE A:p wEdrrdcmmand:
(Background LEFT afferdenihip
iBackaround MIDOLE Or-erNeain p.

Figure 18. The response description for a substrate

Selecting the option Clear Substrate deletes all the display objects from a substrate and updates the
display.

Selecting the option Name allows the user to give some easily remembered name to a particular
substrate instance.

Selecting the option Send allows the user to send a message to the selected substrate. When this

option is selected the user is prompted to enter a message name. [f one is specified, that message is
sent to the substrate and the corresponding method executed

There are two additionai options available by selecting the window’s title bar with the middle mouse
button pressed: Edit Window and Edit Button Event Function.

Selecting Edit Window invokes the Window Description Editor, a modified version of the Interlisp-D

Inspector, allowing the properties of the substrate’s window to be interactively modified. This

inspector allows window properties to be interactively changed and the results seen immediately The
Window Description Editor is shown in Figure 19

* Window De ption Editor
.:'~t - PR M S L)
£ £5E0 B
LA TR AU S PR S O
of .y .
n(‘,n' L&
1t
FeN
~
Ny N W N « 8
NFN N

a) B -

Figure 19. The Wirdow Descriptior Editor

29

P g

PN
DA A R
I

s p o

LY T A
. .',',.'.-"; rd

:& ‘l.

.

. R PR
NG A
N .'.':,'v,.l 4 ' \,'

.
P
25 [

P

" 'l- N- .l- .l. 'I
2E e

2Rt kT AE
,.,I..[l‘ 'l !

S AW DS W, PR T P AT AT RS R T T e

Chips Technical Report

Selecting Edit Button Event Function invokes the Interlisp-D editor DEdit on the function that
determines the window's response to selection with the mouse cursor. The default button event
function, ChipsEventfn, merely sends the message RespondToSelection to the object that was selected
with the mouse cursor. This enables the user to control responses to selection through the menu
option, Edit Response to Selection, provided for display objects and substrates. Editing the button

event function directly may disable this ability but is provided to allow for more flexible determination
of a window’s response to selection.

'4.3.4 The Display Editor

The Display Editor allows the user to interactively design a display object. This is done by using a
modified version of the Interlisp-D graphical editor, Sketch, to draw what the display object should
look like when displayed on the screen. Using the Display Editor, the user can define both what the
display object will look like and its mouse-sensitive areas. It also provides a way to define alternate

sets of picture specification instances for the display object and to establish a mouse-sensitive
subregion as a physical connector. The Display Editor is shown in figure 20.

ﬁ
¢
|
}
v
.l'
<
¢
E
n
%
~ .
~,

‘Degcn'be Picecxﬁcat' rlspla yE(ﬁt i JON b
Control Panel [sf ,
menu —fi
arf L
default R Main
foo) 9 menu
? s Qroup
- UnGroup
Image window \\)--_J....-/ Undo »
Defauits)|
Grid »
Move view)
HaraCopy ?
Put
Gr*
E «t »

Figure 20. The Display Editor
Instances of the class DisplayEditor are cached on the editor [V of the display object that is edited.

Each display object has at least three pictures associated with it: the figure, mask, and map. The
figure picture describes what the display object will look like on the screen. The mask picture
describes which parts of the display object are opaque. The map picture describes what part of a
display object may be selected with the mouse cursor.

The main menu of the Display Editor provides graphical primitives such as circles, polygons, curves,
and closed curves plus simple operations for manipulating these graphical objects. The main menu
can be seen to the right of the main window in figure 20.

The Display Editor adds three options to the main Sketch menu: Move to picture and Copy to picture,
both available in the submenu of their corresponding main menu selections, and Exit. When one of
Move to picture or Copy to picture is selected, a menu of all the pictures currently defined for the

30

Sl Sk Sl Aol Rl Sal Ual Yol Sl S S R ek

Chips Technical Report

display object is presented. If one is selected, the user is then asked to select the elements to copy or
move. If one or more are selected, they are then moved or copied to the selected picture.

The exiting options are Exit and Quit. Exit saves the sketches to the editRepresentation [V or the
picture specifications of the display object being edited, creates a bitmap from the sketches, and
updates the offset of the picture specification to represent the offset of the region occupied by the
picture’s sketch from the largest region occupied by the sketches of all pictures Quit stops the editing,
leaving the picture specifications as they were hefore editing.

The Display Editor also provides a control panel for moving between the various pictures of a display
object, for creating new mouse-sensitive subregions, for switching between various =ets of pictures
defined for the display object, and for adding new sets of pictures to the display object This is shown in
figure 20 to the left of the main window.

The control panel menu is split into three parts. The top part is the option Describe which prints
information in the User Exec window describing the display object and where it came from.

The next part of the control panel menu is the Pictures Menu. This allows the user to switch between
pictures by selecting a name with the left button. Selecting a picture from the control panel with the
middle mouse button pressed presents several other options. Each picture has two options: Display
picture and Edit picture. Selecting Display picture displays the selected picture in the background of
the picture being edited, in gray. This is often useful for lining up parts of two separate planes.
Selecting Edit picture makes the selected picture the picture being edited.

The user can define new pictures, representing mouse-sensitive subregions, for a display object. The
map and subregions are stored in the tree form used by the map of a display object. Their position in
the tree is represented in the control panel by indentation, those things indented further to the right
indicate that they are at a lower level of the tree. To add a new mouse-sensitive subregion, the user
selects the map or an existing subregion from the control panel with the middle mouse button pressed.
This presents a menu with several options, including Subdivide picture. If this option is selected, the
user is prompted to enter a name for the new subregion, and a new subregion picture is created, nested
within the selected region.

A subregion picture can be deleted by selecting it with the middle mouse button pressed and selecting
Delete picture from the menu that appears.

A subregion plane can be established as a physical connector by selecting Label Position from the

middle button menu. When this option is selected, the user is prompted to select a position in the
Sketch that will serve as physical connector position for this picture This will add the picture's name
to the physicalConnectors I'V of the display object being edited when the Cisplay Editor is exited.

The next part of the control panel menu is the Tags Menu. This menu allows the user to switch

between editing different sets of pictures that are defined for the display object. To select a particular
set of pictures for editing, its tag is selected from the Tags Menu with the left button.

There are three options available for tags by selecting a particular tag with the middle mouse button
pressed: Add a tag, Delete, and Copy Tag. Selecting Add a tag prompts the user to enter a name for a

new tag and then creates a new set of pictures for the display object Selecting Delete deletes the
selected tag from the display object’s detinition Copy Tag allows the user to copy an entire set of
pictures to another set all at once. This can be useful if two sets of pictures are to be mostly the <ame
with only a few differences.

31

oS
L J

.- .
P
e

o e Je 0 ey

e

L
e
P

A -afth alh ol Al aiiiafh ol ot all ‘ahd ot ' oln' 04 ol ot]

Chips Technical Report

V>

Pictures are drawn for each display object by selecting graphical primitives from the main menu and
then describing their sizes and where they are to be placed using the mouse cursor.

2
Cdd
o
o’
<
4
k.‘
L]

Chips Technical Report

5. A Session with Chips

In this section, we will describe a sample interaction with Chips. We will go through the creation ofa
simple class of domain object, called a FaceDomainObj, to demonstrate the interactive facilities for
creating and modifying part of an interface.

5.1 Creating a new domain object

To create a new domain object class a programmer first specializes the class DomainObject. This is
done from a Chips Browser, selecting Add New Class from the title bar menu, sliding to the right, and
selecting Specialize Domain Object from the menu that appears. The selection is shown in figure 1

T et

;

Figure 1. Specializing the class DomainObject from the browser

This creates the new class, FaceDomainObj. This class will inherit the functionality and properties
needed by objects with graphical images.

5.2 Editing the display object of a class of domain object

Once this is done, a display object can be defined for this class of domain object and edited using the
Display Editor. First, to create the new display object, we select Add Domain Object from the Chips
browser (see figure 2).

Bo:Hioas
‘}",'hy-q A E oyt tarm g
At (AddMethod »

Caate S emrattar .
‘Moe Mc.etAernga T
apy CopyMaemaaT o a
‘Perame Caramatierr 3w

E 1t E 3t aee -7

Figure 2. Adding a new display object

This creates an inspector that we will use to define our new display object. Since this new display
object will use the default properties, we need only declare the tag that we will use to refer to the
display object and then install the new display object by selecting Install from the title bar menu of the
inspector (see figure 3).

defaglt

Claz: Dr:zplayilbyect
Frgure Proturelpecificartion
mazk Przturelpecificartian
LETo] Froturslpecificatran

Figure 3. Installing a new display object with the Display Object Specifier

Su

v
’

A] BASD
R AT (A

£ a0 A A
“.15-:./ PR n’_

A

2l
AL

¥
.

Y .1";'.:‘ "::'_ ;4'.'/..('-

a
.

rf 5 7
g

¥

'rl.l S
N

P T]
e et T et
P AR

}.J. e

v
»
3

o Te
I I T}
N A
o

. .
.
LN
.

A

-{- ". ,- ". ". '.-
. [T e

“r
.l .I'
220 I I

L oe e,
ST
P

YN

S

A

;;\

S

o

YT] R N et AT AT et T e T e T T e Attt DRIt R I _‘.-4, e e e e e T e e e T e

"o - R GASN g - A A T - . e N e e e PR U N M R I e PO T P -

?:-'MMI\ Y i R T SIS N N P ST I SN P TP N Sy AT R T T VU, 0 P PP v v P |

.
.

ML L

LA

LA

AN,

='e

RIS
UL
BN

ha)
¢

) e e Y

R

b 1]
L S

E

a

¥
rs

e Ao A0 At AValf e re SN b S B Wl e Y

Chips Technical Report

Next, we will edit the way our new display object looks using the Display Editor. To do this, we select
Edit Display Object from the Chips Browser (figure 4).

Ea ‘ioae
ttemody E 3rrMarmca

-3 ~aaherrsg,

Coiete Cararattarmc3,
Move MG artemaa Ty,
Tioe Ito.ftemra3To.
Deryma Sar et tarm =y

€ (EntCrasy) »i

Figure 4. Invoking the Display Editor from the browser
5.2.1 Using the Display Editor

The Display Editor is a modified version of the Interlisp-D graphical editor, Sketch. It provides an
interactive way to draw and edit pictures (figure 5).

Plane selector menu

? . Command menu

30U '
. Uni3roug
Image window —— | Urmo

C atauts M

Mara gy X
Pt
et i

Figure 5. The Display Editor

5.2.2 Defining the figure picture of a display object

Using the graphical editor, we will first draw the figure for the display object of the class
FaceDomainObj. This figure will consist of a circle for the outline of the face, two filled circles for the
eyes, and two curves for the nose and mouth. The completed figure is shown in figure 6.

Move "
<0y ”

‘. !

KD
!
’ 75) |
//, i
' 3rouo
— Lnirue
.
L Nao »
~ Cataumy =
3ma *
PAN e e
mararl spy M
Prat i
aet !
£ ¢+ o

Figure 6. The figure picture of the display object of FaceDomainObj
5.2.3 Defining the mask picture of a display object

Next, we will define the mask picture of our display object. The easiest way to do this is to copy the
outline from the figure picture to the mask picture. This is done by selecting the Copy option from the

34

Chips Technical Report

main menu, sliding to the right and selecting Copy to picture from the submenu that appears. This
presents a menu of pictures currently defined for this display object. Selecting mask from this menu

establishes it as the picture to be copied to. We may then select any of the graphical primitives of our
figure to be copied. We select the circle that defines the outline of our display object.

We now switch to editing the mask picture by selecting mask from the control panel. The circle that
we copied from the figure is the only thing currently defined for this picture. [f this circle is filled in
completely, the display object will be completely opaque. We'll just fill in part of the circie to

demonstrate how to make part of a display object transparent. The completed mask picture is shown
in figure 7.

S

Opaque par;s_NP\ ‘ A/

Transparent part -~ S

Figure 7. The mask picture of the display object of FaceDomainObj
5.2.4 Defining the map picture of a display object

Next we'll define the map picture of our display object. To do this, the outline i~ copied to the map
picture using the procedure described above.

We switch to the map picture by selecting map from the control panel. Since we want to be able to

button on the entire display object, the outline will be filled entirely. The completed map picture is
shown in figure 8.

Figure 8. The map picture of the display ohject of FaceDomainQOb

That completely defines our display object. Our display object is now available for use To continue,
we select Exit from the main menu, saving the definition of the display object to its PictureSpecification
instances

. T Pt B et e e et e T et c st te et
R S -_‘.‘_'-._' e T T e T e T NG BRSNS
PR AN A AT AT ST I N ARy

L) - U
T N .
B L L B P N T T e A N P T -
I D P S S SR P G I Oy O T WP O, Uy S, TP S S S s B SV, PRI

P

P

LA T 2 2 2]

Bttt

D s

& T o '
e I
7ty st s @ g’

A

- . € 85,0, tetua
KA Ar e o S A

e

,",. ‘7

N ":
RSO

PR

-";?.

i
v

SRS)
A

.

L R R Bl 0 R i b B Rl B it e s

-

Chips Technical Report

s WK

5.3 Using a domain object with a substrate

L o
»

=

To use this domain object, we will need a substrate in which to place it. We can get a new substrate by
selecting the Chips Icon with the middle button and selecting Create a substrate from the menu that

:,';- appears (figure 9).

‘ »

e T
. —~——— ~N

SN

Cr
)
N Create 2 substrate-

Erowse afile ?
——-Browse Saving Options
Edit Chipsicon

Figure 9. Creating a new substrate using the Chips icon

Selecting in the background of this new substrate presents a menu of all domain objects currently
defined in the environment (figure 10). You will notice that FaceDomainObj has been automatically
added to this menu.

A Substrate Window

Cockroach 1
DemaComan:dbject !
DomainCorec? ‘
ElgerDomon,

FaceDomancp I
ntermaiC annector
Lbro

MechaniamDancerom:: o)

Figure 10. The default background menu of a substrate

Selecting FaceDomainObj from this menu creates a new instance of the FaceDomainObj class and
places its display object in the substrate. We can create as many face chips as we want and place their
display objects in the substrate. Three face chip display objects are shown in figure 11. In this figure,
Face Domain Object Number 2 is overlapping Face Domain Object Number 3. Notice that Number 2 is

partially transparent, revealing part of Number 3 around the edges. This is a result of how we defined
our mask picture.

36

. - -, R P

- - A . Y T - P T o U P S
TS R T i I o S DT S AT P AT I L O A A et
N AN R N A N N N A AR Y RN

o, 5t

Chips Technical Report

Y AR Tal)

P

Face Domain
--- Object 2

>

R o

Face Domain
Object 3

Ry

- ..

"

Face Domain Object 1
Figure 11. Three Faces in a substrate .

Selecting a display object with the left button picks it up and drags it, following the cursor until .
another button is pressed. Display objects may be put down anywhere in the sul .trate or in any other g
open substrate on the screen. Selecting a display object with the middle button provides a menu of K
options that allow a user to edit various aspects of the display object and its associated domain object 7.
{figure 12). One option, Edit Display Representation allows the user to reenter the Display Editor,

changing any of the existing pictures or adding pictures to the display object. We will add a picture '-'_'

that declares a different button response for part of the display object. We will declare that selecting
one of the eyes of this display object sends the message Ouch to the domain object

. L atateIm oL LD rae
A Substrate WirvERLECE E1-TI8 T TS IR T
:r-av;C»so'av-’o,-v"
rpact C 0y n e .
-
Ena.,c 1803 T4 et e
T.aten Tag !
Jmme[-aamv Ipent !
— Iargtiessagers Cisciae oyt -
it1aue tlarngy Peny *or Cosplay [0 e -

. . Syeme Coman Loe st .
S+ m T apation

rapa tCaoman JDact R

- Ierimetengernlimar Tpyect) -

Figure 12, Selecting Edit Display Representation from the middle button menu of a display object
5.4 Interactively changing a display object

We want to define a new picture for this display object that will define an additional mouse-sensitive
region. To add this picture, we select map from the control panel with the middle mouse button
pressed and then select Subdivide picture from the menu that appears (figure 13)

S A S A R T AN
NI NN A

_"n. P T U A R A _L'

PUTATRY LWL WU T T W WL T S SR L

HehweSoecitication Deplay Editor

T T = ar

C 1cra-gomare tre

€ jegicrure Rl
hg 3o Ll I~y ge
matLipei gz rncn
myal 2 ete i inre

K2

defaut p—— >

- 3030
- L0
! |
i Jrao
T —— C afary

Figure 13. Adding a new picture to the display object of FaceDomainQbj

The user is then prompted to enter a name for this picture. The Display Editor creates a new picture
called eyes that will be used to draw the new mouse-sensitive region for the display object. It also adds
the name eyes to the control panel. To define this picture, we need only copy the eyes from the figure
picture to the eyes picture. Copying is done as described above. The completed eyes picture is shown
in figure 14 below. Note that the eyes picture does not define the visual appearance of the eves, which
is done by the figure picture, but merely defines a new mouse-sensitive region.

Catere
Mave L
Copy ol

. ranje
. g

3

'

i res

rouR
UnGroup
Unao »
Oefauity ¥
Gra M
Move vigwd
E A HarmCopy M
Put
yes Get

’E N4 M

Figure 14. The eyes picture of the display object of FaceDomainObj.

Exiting the editor redefines our display object, defining a new mouse-sensitive region. To use this
mouse-sensitive region, we must alter the display object’s response to selection with the mouse cursor.
This is done by selecting the display object with the middle mouse button pressed and selecting Edit
Response to Selection from the menu that appears. This invokes the Interlisp-D editor DEditon a form
that describes how this display object is to respond to selection. We will add an expression to this form
that tells the display object to send the message Quch to its associated domain object whenever one of
its eyes are selected. Figure 15 shows this form.

Chips Technical Report

Figure 15. Editing the response to selection form for a display object

When an eye is selected from one of the faces in our substrate, the message Quch is sent to that domain
object and the corresponding method is executed, ringing bells and printing a message in the substrate
window (figure 16).

Response to
selection

Figure 16. Selecting an eye of the display object of a face domain object
5.5 Conclusion

As you can see, using Chips, it is quite easy to define what a piece of yvour interface looks like and to
determine its response to selection with the mouse cursor Now that we have gone this far, it is easy to
go ahead and develop the domain object’s functionality more fully using the display object on the
screen as the access point. The display object’s selection response can be changed interactively The
way the display object looks can be changed by changing the drawing The internal data structures
and the methods defining a domain object’s behavior can be accessed interactively In short, the user
interface can be quickly and easily modified.

~
s %

[]

39

o
’.

X
‘ Chips Technical Report

» * £

el a

P

PR By W I]

140

e e e R e e Y N S S s e

et e -«
s " ma =T e

Rat ly

TTW T TR TERNE Ty T Ty T ATV TIATE Y

Chips Technical Report .
| References
‘ Bobrow, D G and Stefik, M The Loops manual Tech Note KB VLSI 31 13, Xerox Palo Alto C.
Research Certer, Palo Alto, CA, 1981
Bonar, J and Cunningham, R Bridge: An Intelligent Tutor for Thinking about Programming In f
New Horizons in [ntelligont Tutoring, edited by John Self, 1956 ol

Borning, A. The programming language aspects of Thinglab, a construint oriented simulation .
laboratory. ACM Trans. Program. Lang Svst. 3, 4(Oct. 1981), 353-337 -
K¢

Duisberg, R.. Animated graphical interfaces using temporal constraints. In Hurian Factors in
Computing Systems: CHI'86 Conference Proceedings (Boston, MA). ACM, New York, 1936, pp 33 98

Goldberg, A. J , and Robson, D. Smalltalk-80: the Language and Its Implomentation, Addison Wesley,
Reading, MA, 1983.

Hutchins, E, Hollan, J, and Norman, D. Direct Manipulation Interfaces, [ser Contervd Systems
Design, edited by Donald Norman an Stephen Draper, Lawrence Farlbaum Associates, Hilladale, No,
1986

Lesgold, A, Bonar,J, and Ivill, J. Toward Inteiligent Svstems for Testing University of Pittzburgh,
Learning Research and Development Center Technical Report ONR/LSE -1, March 1937

Norman, D Design principles for human-computer interfaces In Human Factors in Computinz
Systems CHI'83 Conference Proceedings (Boston, MA). ACM, New York, 1933, pp 1-10 -

Rosson, M. B, Maass, S, and Kellogg, W. A, Designing for Designers An Analysis of Destgn Practice
in the Real World In Human Factors in Computing Systems and Graphuwes Interface 'S7T Conference
Proceedings (Toronto, Canada). ACM, New York, 1987, pp. 137-142.

Sannella, M, Interlisp-D Reference Manual. Xerox Artificial [ntelligence Svstems, Pasadena, CA\,
Oct. 1985

Schultz, J personal communication, 1987.
Sheil, B Power Tools for Programmers, Datamation Magazine, Feb 1983

Stefik, M., Bobrow, D., Mittal, S., and Conway, L. Knowledge Programming in Loops: Report on an
Experimental Course, Al Magazine, Vol 4, No. 3, Fall 1983, pp. 3-13.

{1

T A A e e .
. R S e I e e i I P g

YR A A

Chips Technical Report

Chips Technical Report

Appendix A: Special Programming Techniques

Several aspects of the Chips program code take advantage of unique features of an open Lisp-based
environment. While the techniques described in this section are not part of Chips, per <e. they are
interesting and generally useful

A.1 A General Caching Function

Chips uses a function called CacheResults to be used with functions that have no <ide-effects texcept
perhaps storage allocation) and consume large amounts of time or space to compute CacheResults
takes a function and its arguments and returns the result of applyving the function to its arguments
However if the same function and arguments are supplied to CacheResuits auuin, it simply return the
same result it returned previously. This function is often used for pop up menus Creating pop up
menus 1s slow and it consumes large amounts of storage

A.2 Self-Inspecting Code

When the programimner defines a new subceluss of Chip, the menu whose items are all the subcla<zes of
Chip becomes obxolete There are three wavs of dealing with this one, ignore the problem and et the
programmer fix this menu by hand, two, modify the method for defining a new subeluss =0 that it
updates the menu or in some way records the fact that the menu needs to be updated, or three, have
the function that produces the menu check what classes are currently defined and if new ones have
appeared, create a new menu, otherwise use the old one

Using the cache and scheme three in the preceding paragraph, it is trivial to create menus tha
automatically update themselves only when necessary . When a menu is needed, the list of item- that
should be on the menu is used with CacheResults A new menu will be created oniy 1f the list is
different

Schemes like this simplify the code The programmer need not remember to update the list after
defining a new cluss, the system notices automatically

A.3 Fast Bitmap Intersection

Frequently direct manipulation interfaces need to determine whether irregularly shaped objects
overlap Itis possible to take advantage of the fact that BITBLT is a very fast operation on Xerox 1100
Series workstations The shadow bitmap and the relative displacement of one object from the other
are used in a series of four BITBLY operations, and one BITBLT -like operation to a ~cratch hitmap
Figure 1 illustrates the procedure

Appendini A

.ot o e . N <, - P -9y .
O R P S SR o . D)
oL - ST, W et . - .

W . P AT S L Y . ~ . . AR
£ U TR T TR W T D W e h n - R b,) v

A A
e

I

l'\l P{\’;ﬁ‘ .ﬁ..\“1"

"_;".‘55.7.?. '.’.".";-R's'&'

"-5_ »

o
v

-t c e
. e e e -

Chips Technical Report

' Shadow A

Shadow B

Region occupied by
Shadow ! and Shadow 2
(not constructed)

Procedure for Intersecting Bitmaps
1 Clear the scratch bitmap. 2 Paint Shadow A.

3 Erase Shadow B. 4 Invert Shadow A.

D >

Figure 1. Intersecting bitmaps

If the scratch bitmap is blank after this procedure is executed then the two objects do not overlap. If
the scratch bitmap is not blank then the black areas will be the areas that are common to both
shadows with the given relative displacement.

It is important to note that it is not efficient to use the [nterlisp-D function BITMAPSBIT to scan for black
pixels. Chips provides a function that does this scan efficient]y called \BITMAPCLEARP.

A.4 The EditWhen Macro

The EditWhen macro is used throughout Chips to provide uniform access to the underlying code of the
interface. The macro itself is very simple and is described below

(EditWhen keyNameorExpr whoi [Macro]
Parameters:

keyNameorExpr — either the name of a key (on the keyboard) or an expression

who — the name of a function or method

If keyNameorExpr is the name of a key, determines if the key is pressed or else keyNameorfxpr 1=
evaluated [f the key is pressed or the expression evaluates to a non-NIL value, whichever the case,

Appendix2A
T e T T e e e T e A e e e e e e
{': T -f.‘f}(?-'}f.‘f‘(:r:‘n‘:-’.‘- o e _’[_‘[.“_‘g'.’l‘_‘i ‘iA.A'\I‘ PO T P P P VR A GO S W G Py Gy wy i W Wy

S
n,

PR R

Chips Tecnnical Report

the function or method who is entered with all bindings set to their values during evaluation Upaon
exiting the editor, evaluation proceeds from the point of entry

EditWhen basically allows a user to set up a conditional breakpoint in the code We have used this

macro to provide a uniform interface to the code of Chips. Throughout Chips we have strategically
hope) placed calls to EditWhen that look like the following:

W

(EditWhen OPEN functionOrMethodName)

This allows a new user of Chips to find out about the code that is used to perform various interface
functions by performing whatever action that he or she is interested in while holding down the OPEN
key So for example to examine the machinery behind figuring out how Chips determines what
graphical objects are selected by pressing a mouse button, the user needs only hold down the OPEN ey
and then select a display object, a substrate, or whatever, with the mouse curor This will <uceresis ey
open each function or method as it is called, allowing the user to examine the function or method and
then proceed by exiting the editor, continuing to hold down the OPEN key We hope this will nel
people become familiar with the underlying code of Chips.

p

AppendixiA

~ T

~
PR

VXXX YV

LN XA

R R TR
7’

]

Chips Technical Report

Appendix4A

LS M ST LA (AP EIAP U ot o UL e T N -ﬁn.v PR A -\n.._...-.\..\ ;o “*-vutuu\.-'.*nfl.-l\ -.»‘» P ¢ C,
YNYRYYY AR ARRE FAN) , P ’

A - - - b - DL . - P Y » I " - W - - 1) |) o
0
Chips Technical Report "]
N
™

Appendix B: Applications >

Digital Circuit Editor and Simulator o~
A simple editor and simufator for digital circuits was created to help develop and demonstrate Chips N
See figure 1 below treaders familiar with electric circuits may notice that the ground is miszing) ey
Many common integrated circuit components are detined, including AND gates, OR gates, NOT :’.:-
gates, NAND gates, signa! sources, wires, and switches. Creating the circuit editor was easy — once .
classes for circuit components were defined and their schematics were drawn — all that was required ;
to build a circuit editor were a handful of methods for interactively connecting components with wires

The input/output behavior of the primitive gates are specifled as a simple logical expression in Lisp -
The input/output behavior of the NAND gate is defined using a circuit conzizting of an AND zate =)
wired to a NOT gate. Thus demonstrating that new components, like the NAND sate, cun be detined :;-:
completely interactively without programming using the circuit editor and other editors provided by {"
Chips. Signal propagation is implemented as a discrete event simulation When o circuit component)
changes state, it recomputes its outputs and if they have changed, it signals the objects it ix conneered ..
to. Each signal is considered an event, and is placed in a global event queue by sending a mes<zage to

an event manager object. The event manager dispatches events in its own process 20 various control
regimes can be implemented.

Ve TS

(OR (OR (ANU p q) r) (AND (NOT 3) (DRt 1))

Figure 1. Adigital circuit

.
e
g

o
v
’
.

i

s
.

LAt
.
L«

Y

" « ot
y Yt b

>
ata’e ',

plr sl

.
Lo
»

AppendixIB

i S S TEER.) SER S

Chips Technical Report

Bridge

Bridge (Bonar and Cunningham, 1986] is an Intelligent Tutoring System to teach introductory
programming. Bridge teaches programming based on the idea of programming plans. Programming
plans model the conceptual understanding which allows experienced programmers to combine several
programming language constructs into common idioms. These plans are the same for any procedural
programming language, though corresponding code would be slightly different. For example, when
writing a program it is often necessary to keep a running count of something. The idea of keeping a
count always has certain features associated with it, such as incrementing the counter and using the
value of the counter.

Bridge teaches programming by "bridging the gap” between a student’s understanding of specifving
procedures in a natural language like English and the understanding needed to write a procedure in a
programming language. The student works through three phases to specify a procedure in Bridge: a
natural language phase, a programming plans phase, and a programming language phase. The
student may request feedback about a proposed solution at any time.

In Phase 1 of Bridge, (see figure 2), the student constructs a solution to a programming problem by
selecting and moving English phrases selected from a menu. Each phrase is a chip. These chips
format themselves when the student moves them, highlight themselves at various times, and
disappear when the student discards them.

-

Congratulations! Your -
gvoyun 15 correct for

hasel.

o NN
Ery\"‘?\ Click on "Done S

WithProgram™to gn anto

“, > Phase? s
A nts
Ny Done With Program
g Instructions
[Stant Over

Add Two Members

Wrae a program that uks the
user it he/she would liketo
add t7o integers [} the usery

response s ‘yes " then read in Ask . . .if he wants to add {wo integers

two imegers. compute the sum. 1 the \

and pnint nut the reautt. [the TOIPONSe 1 yes - -

user’s response 15 'no”. print Read n .. . an nteger ')

out athank you anyway |
\
|
!
|

Rasd in . . . an nteger
message.

Compute the sum

 Engish Phrass ster > I PR SR YL
Compute . . otherwise

Print . .

Output . .

Get . .

Aead N

It the response 1s yes

Prnt .. “Thank you snywey”

Figure 2. Phase 1 of Bridge

In Phase 2, (see figure 3), the student constructs a solution to the problem using a visual programming
language (VPL). Each icon in the VPL corresponds to a programming plan. The student buiids a
solution by assembling the programming plans much like putting together a jigsaw puzzle

Appendix2B

et AN Vit AN S U i aciie J e (RS Sy

= - aa A ASsAT..ma

- aV AR " ol s X YW MY e W YN Ve Mg W W N Lphs ol tufia ¥y fa =y San Cidinbaliet - bl
Chips Technical Report -
L -
™~
)
“
’_..
v'.:'
TTT T ot
e Tones ™ 7777 : ‘.,
Ve Doue with prograny e 23
* ":r~ Instenctions i Fromp? Flan
il Runi'rogram ! —
& a Start Hhiase Y Over } . '-:
Sage Advico from Georky (tm) i e,
Y
Sarry. ¢on cannot N
put your plans f._
o down here berause 4 o= q’._
- 3\w4. = they ovetlap — 5}
;} v w7 another plan. :
VAN e d
‘:‘.‘
S N -j'-
- J
Ask . . it he wanls ta add 'wa integers S 2
. Compute
i the responsae is yes . . Plan
Read in . . . an integer
Read in . . . an nteger .l
Compute . . . the sum C:Q'L-J_‘h
Print . . .the sum ===
otherwise . . . i - ey
l;zﬁi:::::!:i:'u'"g '{__ . Pl Natput :-"_.
P Piae o
Y =
Figure 3. Phase 2 of Bridge Ay
In Phase 3, (see figure 4), the student constructs a solution to the problem in Pascal, using a syntax o
directed editor. -

¢ v
.

e 2
4

Appendix3iB

- - - .l'.-‘ ".’ ‘I .!-.- ‘-"-"-' . et m T e B <.t
SN S SRR AR SR

ha N ot et L. .-..‘. St A SRR ". W
-:'(A'L.‘ PO VLAY, PRV . AU PN W GU N W TP 0 AR S I IR

Wi Wl W WL W) FLTW) T Vo T ST T 8 NS T S e e

Chips Technical Report

T—T | Sage Advice from : {tm)
Visuai Solation .--
pholaing
Please
Proapt Plas position the
oot - ~ursor where
Tree T you would like
" . xhehxera(emen(
i h 10 he.
T2 [XX,1TY : <
L amuln:l Plan R et "'.‘ 3 .‘:\
e — - -iRepent Window . ,
hen - » .o : Stars Over
[B, End Bexe ==
Qutpst a
fopme o aa I
ua
Elald 4
v b
o SN 2, ¢ preeoer her
Taput Rey
Pl "o
LIN]
war [
] pein
‘—_: '_ R R R R R R LT T
Compaete
Plaa ert
) -
2]
-
3
L
Ostput
Pisa
2.}
-

Figure 4. Phase 3 of Bridge
We used Chips to develop the visual programming language in Phase 2 of Bridge.

To construct a program using the VPL, the student moves the plans around on the screen and attaches
them together by fitting a tab from one plan into a slot in another plan.

Different parts of the plans respond differently to selection by the mouse cursor To use the value from
one plan in another part of the program, the student selects the box marked Value. When this is done,
an instance of the class ValueChip is created, attached to the cursor, and may then be placed inside
another plan. Figure 5 shows a ValueChip instance that is about to be placed inside the Output Plan.

)
bod
»

i
";'-.o‘..)

RS Rt)

Appendix4B

Visual Solutiomsos -

7
Prompt Plan

Zeteey

: E

Ay
Comuuonnl Plan
Arar T, Nres € e
2
Qutput
Input 1
e Plag
Plan)
7 Ly
Input
Plaa
S
-
2
Compute
Plan

Figure 5. The Visual Programming Language from Phase 2 of Bridge

Once the student has constructed a proposed solution to the problem, the program may be executed.
As each plan is executed, it inverts. Also, as values are updated, these values animate throughout the
program to the location of their respective variables. Thus the VPL provides the student with an
explicit view of both the control flow and the data flow during execution.

This application proved especially difficult because so little is known about the effective use of visual
programming languages. Chips enabled us to do extensive iterative design of the language,
developing six significantly different versions in three months.

AppendixsB

P AR

LS w LY,

o

AR

S X

..

[4
.

WS i vy

Y

. ',. -

28

£,

e At ata

"v--.

e* s

P

A

oWt "v'

v 3

P T T e R R I R T o o S AV D A L A A AR R e e e = =

Chips Technical Report

N EEY e s

g

MHO

MHO is an intelligent tutoring system for teaching basic direct current circuits that automatically
generates problems for the student based on a model of what the student understands and
dependencies among the domain concepts {Lesgold 87]. See figures 6-8. Circuits and meters are
created with chips (instances, not integrated circuits). The circuit layouts are automatically
generated. The student uses the meters to measure current, resistance and voltage between any two
points in the circuit.

vn-"';-

system. This 13 also a good Ume to become comtortapie
working with the different machne capabiities.

soln:

When are ready to answer the question please
button on the ready to answer box located in the cwcuit
window.

Utilizing the caicuiator. determine what the reading
from c to d wi be.

nformation Windows

Predict answer

bs clrsud / ’ hai
isady to - |
Answer 7 8 9 «x
Natebook v —— 4508 -
Enter Reading 1 2 3 + ‘
Vo 2 78 Iimu A lotebook ON
lab « 3 8 - neg - OFF
d v ? 1

a Laded

Figure 6. A screen from MHO, an intelligent tutoring system for DC circuits.

[D WP Y

Appendix6B

.
ol e
j"h\.-\ J_’\J_’\)

A A)

vOoLTS

6804.0

T

IEE)

na

10

7002

sa

m

(11

M

Greetings! Here n expioration mode you will be given
the vpportunity to familarize yourselt with aur Tutonng
system. This 1s aiso a quod time to become comfortaple
working with the different machine capabiiities.

Vab s 6804.0
lcd = 189
Ved 5 0.0
Ife s -189
Vhi + -1134.0

DoExercise
lemove Exploration
1+ Label
New Topic

_ ChooseTopic

Reading

lotebaok Browser
QuitTutor

G oTo

ercise

1ode

Remove

a Label

Trace ¥indow

Figure 7. A screen from MHO, an intelligent tutoring system for DC circuits.

Appendix7B

AT I

.
bt Pl '

u@

PN

LRI
L

e

~»

»
A_A _a_A_

\d

-

-~

e T

@

4

PR
¢

AN A S S Sl Al Aol Wl A s

ﬁ Chips Technical Report

Remove
. 4 Labet

Enter Reading
into Notebook

Oo Yo
Exercise

Rernave
a Labed

Figure 8. Using a meter to measure current between pointa and point b.

Appendix8B

L T N T T e
N ANV REITAN

~
Sl

Chips Technical Report

Voltaville

Voltaville (Schultz, 1987] is a discovery world for students to learn about direct current circuits A
circuit simulator and simple data collection and analysis tools are provided so that the student muy
explore electricity in a systematic manner. See figure 9 Voltaville watches to see whether or not the
student actually is being systematic by searching for patterns in the student’s behavior and by
prompting the student to formulate and test hypotheses.

584 | vOLIS
1]
| Noteboolk - .
fab = 1.2 Rdf s -9.0 Htg = 98 Enter Aeading
. nto Natebook
Vac » 4.8 Rbc = 4.0 lcj 3 1.2
Abc a 4.0 Ref =+ -9.0 Akd 3 9.0
Vdc = 4.8 Reqg s 8 Wsa8g —
Ide = 6 Rhi = 1.0 vdl + 48 a Labet

Figure 9. Measuring a circuit in the Voltaville discovery world

Chips was used to build a circuit editor and simulator, and several animated simulations to illustrate
concepts such as current flow. The animated simulations are part of a hypertext system of electricity
concepts, which students can browse for background information, terms, and concepts Students
obtain a paragraph with illustrations by selecting a term from a menu, from a graph illustrating

Appendix9B

s 8«
v

(]

(S N]
o
1

L]
2

. e
L T Y S}
v e

oy

-

o 0
e
PR

PR

.
)

RO ... <

.

.
L g
a s _x_s_*

R

A Y
K ,‘,'._.“. e

L oA

h .'.\/’.' l‘. ..

e

=
AT I

Chips Technical Report

If you wauld like to see same basc definitions mow, you e
fist below. When you are [ooking at a definition card, you m
hoidfaced word/phrase, its defimtion will be displayed. To t

relationships between concepts, or from a concept description that contains mouse-sensitive terms

1 3elect the definition you want fram either the tree or the
ay see some boldfaced worduphrases. f you selscta
18gin, selectan item from the list artree. When you have

finished looking at definitions, seiect CONTINUE from the lis

t
L

[« "<V}
LT S —
e Ut N ——
CURRENT VOULVAGE SOURCE RESISTOF ¢ SERIES CIRCUIT PARALLEL CIRCUIT Eramsg Al
e R ———\ -
CHARGE VOLTAGE g ' S~
/ . k.
. ..
AMPERE AMMETER VOLT VOLIMETER OMM Of IMMETER . Tl

. N

Simudtation with Charges -] Cafirutic
Lircu Lurrent
Ammeter Ampere
AN A—AAS AR ————
s !) Charqe vaRkage soutte
- ’ — ! — Voltaqe VoRmeter
*] | = :' % voft Resittor
|G - 3 3 i
+ be b Ohm Ohenmeter
I —— Parate! Grount SETIES Litr it
%_j Comgpare Curcer | Compare
Compase Vottaqey € camoie wicutt
Qunt COMTINUE

Start Series Simulation 3tart Parallel Simulation

This simuiator ilustrates the MoL.on of mectrons n 3 series sng
parsilel T.rzut Both zrzuits have the same soltage Qurse
E0th the re9.310r3 ~avae 'Pe 331me res.stance For v mplady, ~e
INOw SNy twQ INsrge Darr,)ng Slecirons moving thr sugr

the iriuit onie

Figure 10. A screen from Voltaville, a discovery world for DC circuits.

The window labelled “Simulation with Charges” in figure 10, displays an animation sequence. Snap
shots of the animation are shown in figure 11.

Figure 11, A simulation explaining current flow by animating electrons.

Ap; endix10B

Glossary
AND gate
application interface

button....................... ...

classlibrary ...
CONNECLION ...,

development interface
direct manipulation

direct manipulation interface

display........ ...
display object

domainobject

inspector

instance. ...
Interlisp-D

InternalConnector

v - W An diie At A At CA - Sl
"
Chips Technical Report .
-
a component of a digital logic circuit with two Input= and one outpu? | it
both inputs are frue then the oUput 13 rue ot ners=e 'he output is A
false. see also NOT gate oy
the human computer interface fo a particuiar appitcation :-:
U to press one of the buttons ot the mouse ‘:-_
a ccmputer program for building grapnical human computer -
interfaces .

_ atemplate for a particular kind of ohject including methods for .
responding to messages and variables .
a tool for examining and modifyving classes and their taxonom:c _'-:'_',
relationships via a lattice diagram of classes in Loops
a collection of class definitions designed for some common purpose -

.a data structure provided by Chips for representing relationships .. '
between objects \

.. the human/computer interface used to develop an application program -
a method for a person to control a computer program by manipulatinyg '-',‘.':
pictures that represent objects of interest N

.a human/computer interface that al! “ws the user to command the ’
computer by selecting and manipulat:..g ~artoon-like icons, usually .
with a pointing device, such as a mu. e (. ¢e direct manipulation) j.',:.
n. the screen of the computer; v. to depict on the screen of the computer ey
an instance of the class DisplayObject or one of its subclasses. Y,
determines how a domain object will be displayed on the screen :--.

.. aninstance of a subclass of the class DomainObject i
a class of object that can be displayed as a mouse-sensitive picture
to move a picture of an object on the display by animating it ;-'::f
an interactive program for creating, displaying and modifving some '::-:
entity of interest; usually maintains constraints that would be tedious o
to maintain by hand and provides a convenient interface to the entity)
a queue of messages with time-stamps to be sent by an event queue] !
process in an order consistent with the time-stamps ~:-.:~
a description of how a display object is displaved on the =creen, stored :';-:
as an instance of the class PictureSpecification .-
programming language functions or menu options for drawing lines : ;
curves, and text, etc. on the display ' ®
a picture used in a humanv/computer interface 1o represent suime obpect + o
or concept in the world R
a specialization of the Interlisp-D graphical editor. Sketch whien
allows a user to interactivelyv design the Inok< ol particurar display)
object .

an aspect of object of object-oriented programn e When anew class ‘.
is created by specializing another class it receives benayior from s T
super class

a tool for examining and moditvingdara ~tructanes oo Ierersp D

an object in the computer produced by a cliass

aprogramming environment which provides sophi-tocatea Zraptied

programming tools for the Interli<p proorammr s onsaa e °
implemented on swork <atons :,

il

aclass of domainobreer that estabiisshes doomres o per wovn o K
. i , -

physical connectors o domaan obo ot et e e e .
-‘-l

RN

Glossaryv ®

\ e

“ .,

RS

.l

. . - . T
e Y T T ‘

. . '.I.!.- A - DU
Py Vs T TS TRV Ve T T T IR TR . N TR

¥ G v v v

I

Chips Technical Report

v1ie,instance variable, a variable assoctated with an object whose value
1s local to that object

Loops an object oriented programming language and tools for program
development integrated with Interlisp-D

mapco.. oo ... a list of elements, instances of the class PictureSpecification with

mnemonic tags, that name different partsof a display object,
determines the mouse-sensitive regions of a display abject

mask ... a description of which areas of a display object are to be opaque and
which are transparent; stored as an instance of the class
PictureSpecification

message..................................... a command to an object

mechanism......................... a collection of domain object instances, usually connected together,
representing a domain object’s internal behavior

Mechamsm Editor..................... a specialized substrate for editing a domain object’s mechanism

method ... a subroutine used by an object upon receipt of a particular message

mouse event................cceeene pressing or releasing one or more of the mouse buttons

mouse-Sensitive an area of the workstation’s display which can be selected with the
mouse to produce some effect

mouse-sensitive picture a picture (usually associated with an object) which can be selected with
the mouse to produce some effect

multiple inheritance a capability provided by some object oriented systems, including Loops,
which allows classes to inherit from more than one class

NANDgate..........ccccooiinie a component of a digital logic circuit with two inputs and one output, if

both inputs are true then the output is false, otherwise the output is
true; NAND is an abbreviation for Not AND; see also AND gate, NOT
gate

NOTgate a component of a digital logic circuit with one input and one output, if
the input is true then the output is false, otherwise the output is true;
see also AND gate

object ... an instance or class (see class, instance)

object-oriented programming .. a programming methodology based on the metaphor of communicating
objects, rather than procedures that operate on data types (see class,
instance, message, method)

picture specification ... an instance of the class PictureSpecification or one of its subclasses
that defines the display and edit representations for part of a display
object

physical connector a mouse-sensitive region of a display object that has special

significance to other display objects that muy overlap it; used to
establish physical attachment between display objects

plane represents part of a display object in the Image Editor

to move the mouse cursor to something of interest and press one of the
mouse buttons

Sketch....... the Intertisp-D drawing editor: allows the user to interactively
construct figures from graphical primitives

specialize.......................... to define a new class or method in terms of an existing ¢lass or method

SPY e an instance of the class Spy or one of its subclasses that may be used
with a connection to redirect [/O or do recording of messayges sent via
connections

submenu ... a menu that appear when the mouse cursor ts slide out the right-hand
edge of certain menu items indicated by a grey triangle + >

subregion a region within a region, may be arbitrarily shaped

Substrate a class of object appearing on the display as a rectangular window and

used for displayinyg display objects, displaving prompts and processing
mouse events

Glossary2

R I N I P AT S P SASEINE NP S P G W VP o

L e
<.
o

Ll Pl A L L

< v -',",w'..' - ..-',: '._ \ ik
I ST BT St | ‘"ﬁ‘w'

W NV

Chips Technical Report

user interface e a computer program thut provides a collection of
management system interface elements, such as menus and dialog boxes: otten includs
interactive tools for building prototvpe interfaces
workstation.............. asingle-user computer with a large graphics display, se ceral
megabytes of memory, 4 processzor capable of at least one miliion
instructions per second, and a device for pointing to objects on the
display, such as a mouse

Glossary3

. P AP o AT S R N N T e e .’_ AL SRR AT RN
S, ‘e - D
AT NN NN ¢2¢-x NI T N NS

R R -...(‘ " .P')..‘

.‘.
p
P,
d
LI
o
p.

Or. Philap L. Ackerman
University of Minnesota
Oepartment of Psychology
Minneapolis. MN 55455

Dr. Beth Agelson
Department of Computer Science
Tufts University
Medford, MA 02155

Air Force Human Resources Lab
AFHRL /MPD
Brooks AfFB8, Tx 78235

AFOSR,

Life Sciences Directorate
Bolling Air Force Base
Washington. DC 20332

Technical Director,

Army Human Engineering Lab
Aberdeen Proving Ground
MD 21005

Dr. Robert Ahlers

Code N711

Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Or. €d Arken
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. John Allen
Department of Psychology
George Mason University
4400 University Orive
fairfax, VA 22030

Or. James Anderson

Brown University

Genter for Neural Scrence
Providence, RI 02812

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

{(DSK}CLISPFILES>ORIBO3ICA . (2 19 Mar 37 093 .27:48

1337,03/,093

Distribution Laist [Prttsburgh/Lesgold) MR 1422539

Or. Nancy S. Anderson
Department of Psycnology
University of Marylana
Coilege Park, MD 20742

Technical Director. AR]
5001 Exsenhower Avenye
Alexandria. VA 22333

Dr. Alan Baddeley
Medical Research Councal
Applied Psychology unit
15 Chaucer Road
Cambridge (82 2€f
ENGLAND

Dr. Patricra Baggett
University of Cotorado
Department of Psychology
Box 349

Boulder, CO 8u309

Dr. Eva L. Baker

UCLA Center for the Study
of Evaluation

145 Moore Hall

University of California

Los Angeles, CA 30024

Dr. Meryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152-6800

prof. dott. Bruno G. Bara

Unita d1 raicerca d3
intelligenza artaficrale

Universita dr Milano

20122 Mrlano - via F. Sforza 23

[TALY

Or. Wi1lliam M Bart
Universaty of Minnesota
Dept. of Educ Psychology
330 Burton Hall

178 Pyllsbury Dr . S E.
Minneapolts. MN 55455

Dr. Jackson Beatty
Department ot Psychology
Universaty of Cal tornig
Los Angeles. CA 40024

B .
Sl

.
1%

AN

Dr. John S. Brown

XEROX Palo Alto Research
Center

3333 Coyote Road

Palo Alto. CA 384304

Maj. Hugh Burns
AFHRL/IDE
Lowry AFB, CO 80230-5000

Dr. Jaime Carbonell
Carnegie-Mellon University
Oepartment of Psychology
Pittsburgh, PA 15213

Dr. Pat Carpenter
Carnegre-Mellon Unyversity
Oepartment of Psychology
Pittsburgh, PA 15213

Y
oy
" {DSK}CLISPFILES>DRIBO310A. ;2 10-Mar-37 09:27:48 Page 2
N
N 1387,03/09
.
“ Distribution List [Pittsburgh/Lesgoid]} NR 4422539
a3
o
- Dr. John Black LCDR Robert Carter
- Teachers College Office of the Chief
: Columbia University of Naval Operations
J 525 West 121st Street oP-u1B
o New York, NY 10027 Pentagon
- washington, DC 20350-20C0
Or. Jeff Bonar
L tearning R&D Center Char, Department of
“~ University of Pittsburgh Psychology
~ Pittsburgh, PA 15260 College of Arts and Scrences
N Catholrc University of
N Or. Gordon H. Bower America
. Department of Psychology washington. DC 20064
Stanford University
Y Stanford, CA 94306 Dr. Michelene Ch1
. Learning R & D Center
- Dr. Robert Breaux Universaity of Pittsburgh
* Code N-095R 3939 Q'Hara Street
. Naval Training Systems Center Prttsburgh. PA 15213
\ Orlando, FL 32813
! Dr. L. J. Chmura
Commanding Officer Computer Science and Systems
. CAPT Lorin W. Brown Code: 7590
L, NROTC Unit Information Technology Division
)] "I1linovs Institute of Technology Naval Research Laboratory
' 3300 S. fFederal Street Washington, DC 20375
’ Chicago, IL 60616-3793
. Mr. Raymond E. Christal
.

AFHRL /MOE
Brooks AFB, TXx 78235

Assistant Chief of Staff
for Research, Development,
Test. and Evaluation

Naval Education and
Training Command (N-5)

NAS Pensacola, FL 32508

Dr. Allan M. Collins

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge. MA 02138

Dr. Stanley Collyer

Office of Naval Technology
Code 222

800 N. Quincy Street
Arlington, VA 22217-5000

Brian Dalliman
3400 TTW/T GXS
Lowry AfB, CO 30230-5000

PP A o e e me af L e a4

FrvTEyY

(OSK}<LISPFILES>ORIBO3IO0A. ;2

16-Mar-37 09:27:48

Page 3

1387/03/09

Distribution List [Pittsburgh/Lesgoid] NR 4422539

Dr. Diane Damos
Arizona State University
Department of Psychology
Tempe, AZ 85287

Or. Denise Dellarosa
Department of Psychology
Yale University

Box 11A, Yale Statyon
New Haven, CT 06520

Dr. R. K. Dismuykes

Associate Director for Life Scrences
AFOSR

Bolling AfB

Washington, OC 20332

Dr. Stephanie Doan

Code 6021

Naval Air Development Center
warminster, PA 13974-5000

Dr. Emanuel Donchin
University of Il1linois
Department of Psychology
Champaign, IL 61820

Defense Technical
Information Center
‘Cameron Station, Bldg 5
Alexandria, VA 22314

Attn: TC
{12 Copies)

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser

Lawrence, KS 66045

Or. Randy Engle

Department of Psychology
University of South Carolina
Columbia. SC 29208

Or. William Epstern
University of Wisconsin

W. J. Brogden Psychology Bldg.
1202 W. Johnson Street
Madison, Wl 53706

ERIC Facirlity-Acgquisitions
4833 Rugby Avenue
Bethesda., MD 20014

Or. K. Anders Ericsson
University of Colorado
Department of Psychology
Boulder., CO 30309

Or. Martha Farah
Department of Psychology
Carnegie-Mellon University
Schenley Park

Pittsburgn, PA 15213

Dr. Beatrice J. farr
Army Research Institute
5001 Eisentiower mAvenue
Alexandrya, YA 22333

Or. Marshall J. Farr
Farr-Saight Co.

2520 North Vernon Street
Arlington, VA 22207

Dr. Paul Feltovich

Southern [1Yi1nots Universaty
School of Medicine

Medical Education Department
P.0. Box 3926

Springfreld. IL 62708

Or. Craxg I. Frelds
ARPA

1400 Wilson B1vd.
Arlington, VA 22209

J. D. Fletcher
9931 Corsica Street
Vienna VA 22180

Dr. Kenneth 0. Forbus
University of [1linots
Department of Computer Science
1304 West Sprangfield Avenue
Urbana, IL 651801

Or. John R. Fredertksen
Bolt Beranex & Newman
50 Moulton Street
Cambridge, YA 02138

i

|
§
;

o4

SN0,

L) .
a4 e

v
[S PR D M

NS

S A NN

s
»

7oA

1.-

‘
PR

.

e

T '.. AR

'd

{DSK}<LISPFILES>DRIBO310A. 2

10-Mar-87 09:27:48

Page 4

1987037083

Dystribution List [Prtisburgh/Lesgold] NR 4422539

Or. Alfred R. Fregly
AFQSR/NL
Bolling AFB, DC 20332

Or. Michael Friendly
Psychology Department
York University
Toronto ONT

CANADA M3J 1P3

Julie A. Gadsden

Information Technology
Applications Bivision

Admiralty Research Establishment

Portsdown, Portsmouth P06 4AA

UNITED KINGDOM

Or. Michael Genesereth
Stanford University
Computer Science Department
Stanford, CA 34305

Dr. Dedre Gentner
Universaity of I1linovs
‘department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Or. Lee Giles

AFQSR

Bolling AfB
wWashington, DC 20332

Dr. Robert Glaser
Learning Research

& Development Center
University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15260

Dr. Marvin D. Glock
13 Stone Hall
Cornell University
[thaca, NY 14853

Dr. Sam Glucksberg
Department of Psychology
Princeton University
Princeton, NJ 08540

Dr. Daniel Gopher

Industrial Engineering
& Management

TECHNION

Haifa 32000

[SRAEL

Dr. Sherrie Gott
AFHRL /MODJ
Brooks AFB, Tx 78235

Dr. T. Govindaraj

Georgia I[nstitute of Technology

School of Industrial & Systems
Engineering

Atlanta, GA 30332

Dr. Richard H. Granger
Department of Computer Scrence
University of Calafornya, Irvine
Irvine, CA 92717

Or. James G. Greeno
University of California
Berkeley. CA 34720

Or. Henry M. Haift
Halff Resources. Inc.
4918 33rd Road, North
Ariington. VA 22207

Dr. Bruce Hamy 11

The Johns ropkins University
Applied Physics Laboratory
Laurel, MD 20707

Dr. John M. Hammer
Center for Man-Machine
Systems Research
Georgra Institute of Technology
Atlanta, GA 30332

Or. Ray Hannapel

Scient 1 fic and Engineering
Personnel ang Education

National Science Foundation

wWashington, DC 20550

Or. Harold Hawkins
Office of Naval Research
Code 1142CS

800 N. Quincy Street
Arlington, VA [2217-5000

e

{OSK}CLISPFILES>ORIBO031IC0A. ;2 13 -Mar

37

19:27:43

23ge 5

1387/03/293

Jistrebutton List [Prrtsburgn Lesgold] NR 4422539

Dr. Barbara Hayes-Rath

Department of Computer Scrence

Stanford University
Stanford. CA 35305

Dr. Frederick Hayes-Roth
Teknowledge

525 University Ave.

Palo Alto, CA 94301

Dr. Joan [. Heller
505 Haddon Road
Oakland, CA 34606

Dr. Geoffrey Hinton
Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213

Or. James D. Hollan
MCC,
Human Interface Program

3500 West Balcones Center Or.

Austin, TX 78769

Or. John Holland

University of Michigan
2313 East Engineering
Ann Arbor, MI 48109

Dr. Melissa Holland

Army Research Institute for the

Behavioral and Social Schences

5001 Ersenhower Avenue
Alexandria, VA 22333

Dr. Robert W. Holt
Department of Psychology
George Mason Universtty
4400 University Drive
Fairfax, VA 22030

Ms. Jultra S. Hough

tawrence Erlbaum Assocrates
6012 Greene Street
Phijadelphia, PA 19144

De. James Howard
Dept. of Psychology

Human Performance Laboratory

Catholic University of
America
Washington, OC 20064

Dr. Earl Hunt

Jdepartment of Psycholagy
University of Washington
Seattle, WA 33105

Dr. Ed Hutchains
Intelligent Systems Group
[nstrtute for

Cognitive Schrence (L-015)
ucso
La Jolla, CA 32093

Or. Janet Jackson
Rijksuniversitert Groningen
Brologisch Centrum. Jl'eugel D
Kerklaan 30. 3751 NN Haren (Gn.)
NETHERLANDS

Dr. R, J. K. Jacob

Computer Scrence ang Systems
Code: 7530

[nformation Technology Division
Naval Research Laboratory
Washington, OC 20375

Dr. Zachary Jacobson

Bureau of Management Consulting
365 Laurter Avenue West

Ottawa. Ontarto KA 0S5

CANADA

Pharm.-Chim. en Chef Jean Jaca

Division de Psychologre

Centre de Recherches du
Service de Sante des Armees

108 Boulevard Pinel

68272 Lyon Cedex 03. FRANCE

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Claude Janvier

Directeur, CIRADE

Universite' du Quebec a Montreal
P.0. Box 8888, St. "A"

Montreal, Quebec H3C 3P8

CANADA

N

W b

L VI R

LR

" ¥a Sha"dard a'd ot A oD e ot W u v & Aal tal ol e Saln vV N A
-,
&,
*,
-3
~¢ {OSK}<LISPFILES>DRIBO310A. 2 10-Mar-37 09:27:48 Page ©
AL
>y 387 9308
W
X Distribution List [Prttsburgh/Lesgold] YR 4422539
L]
W) COL Dennis W. Jarv? Or. walter Kintsch
: Commander Department of Psychology
AFHRL University of Colorado
{C Brooks AFB, Tx 78235-5601 Campus Box 345
) Boulder, CO 80302
Dr. Robin Jeffraies
- Hewlett-Packard Laboratories Dr. David Klahr
S P.0. Box 10490 Carnegre-Mellon Universaty
I Palo Alto, CA 94303-0971 Department of Psychology
- Schenley Park
<. Or. Douglas H. Jones Prttsburgh. PA 15213
j- Thatcher Jones Assoclates
~ P.0. Box 6640 Mr, Al Klerder
10 Trafalgar Court Army Research Office
" Lawrenceville, NJ 08648 P.0. Box 12211
-~ Research Traiangle Park
- Dr. Marcel Just North Carolina 27703-2211
- Carnegie-Mellon University
- Department of Psychology Dr. Ronald Knol)
: Schentey Park Bell Laborator:ies
X Pittsburgh, PA 15213 Murray H111, NJ 07974
", Dr. Daniel Kahneman Dr. Stephen Kosslyn
[\~ Department of Psychology Harvard University
- “University of California 1236 William James Hall
; : Berkeley, CA 394720 33 Kirkland St.
. Cambridge, MA 02138
0 Dr. Milton S. Katz
ol Army Research Institute Or. Kenneth Kotovsky
5001 Ersennower Avenue Department of Psychology
s Alexandrya. VA 22333 Community College of
:; Allegheny County
- Dr. Steven W. Keele 800 Allegheny Avenue
- Department of Psychology Pittsburgh. PA 15233
L. University of Oregon
. Eugene, OR 97403 Or. David H. Krantz
i 2 washington Square Village
Dr. Wendy Kellogg Apt. # 15J
. IBM T. J. Watson Research Ctr. New York, NY 10012
r. - P.O. Box 218
. Yorktown Heights, NY 10598 Or. Patraick Kyllonen
o 325 Agerhold
A Dr. David Kieras Department of Educational
" University of Michigan Psychology .
’ Technical Communication University of Georgra
! College of Engineering Atnens., GA 30602
’ : 1223 €. Engineerng Burlding
= Ann Arbor, MI 48109 Or. David R. Lambert
- Naval Ocean Systems (enter
g Code 1417
Ly 271 Catalna Bou'evarg
o San Drego, CA 32152 5300
.
{‘
'l
<,
*l
J-‘
[
e
D
~
:-

<

[y

[N REN

-

Phal Sl Il I R RV)

A s

DSK}CLISPFILES>DRIBO3ICA. (2 10 Mar-37 09:27:43

Distriputien Cost [Prttsburgh/Lesgoid] NR 4422539

Or. J111 Larkin
Carnegie-Mellon University
Department of Psyriology
Pittsburgh, PA 15213

Dr. R. W. Lawler

ARI 6 S 10

5001 Ersenhower Avenuye
Alexandria, VA 22333-5600

Or. Alan M, Lesgold
Learning Research and
Development Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Alan Leshner

Deputy Division Director
Behavioral and Neural Sciences
National Scrence foundation
1800 G Street

washington, DC 20550

Dr. Jym Levin
Department of

Educational Psychology
210 Education Building
1310 South Sixth Street
Champargn, IL 61820-6990

Or. John Levine

Learning R&D Center
Universaty of Piattsburgn
Pittsburgh, PA 15260

Or. Clayton Lewis

University of Colorado
Department of Computer Scrence
Campys Box 430

Boulder, CO 80309

Matt Lew's

Oepartment of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Library,
Navail War College
Newport, RI 02340

N mp v v 4
"."u.'- "n.' o’ A -

y)

Qage 7

1387/03/09

Library,
Naval Training Systems
Center

Orlando. FL 32813

Science and Technology Div-sion,
Library of Congress
Washington, 0C 20540

Dr. Jane Malin

Mail Code SR 111

NASA Johnson Space Center
Houston, TX 77058

Or. Sandra P. Marshall
Oept. of Psychology

San Diego State University
San Drego, CA 32182

Or. Humberto Maturana
University of Chile
Santiago

CHILE

Or. Richarg £. Mayer
Department of Psychology
Unrversity of Calirfornia
Santa Barbara. CA 33106

Or. Cames McBride

Psychological Corporation

c/0 Harcourt, Brace,
Javanovich Inc.

1250 West Bth Street

San Drego, CA 92101

Dr. James L. McGaugh
Center for the Neurobrology

of Learning and Memory
University of Californra, Irvine
[rvane, CA 92717

Dr. Gail Mckoon
CAS/Psychology
Northwestern University
1859 Sherydan Road
Kresge #230

Evanston, [L 60201

Or. Joe MclLachlan
Navy Personnel R&0 Center
San Drego, €A 92152-%300

‘-’ - -~ - - . L) - - - »’ » LY > . - -
s
e
15
g (OSK}<LISPFILES>ORIBOJI0A. ;2 10-Mar-37 03:27:48 Page 8
et o
7= 1987/03/09
o
» Distribution List [Prttsburgh/Lesgoid] NR 4422539
e Dr. James S. McMichael Chayr, Department of
) Navy Personnel Research Computer Scienca
?U and Development Center U.S. Naval Academy
X Code 05 Annapolrs. MD 21402
AN San Diego, CA 92152
- Chair, Department of
\ Or. Barbara Means Systems Engineering
oy Human Resources U.S. Naval Academy
AN Research Organization Annapolis, MD 21402
N 1100 South Washington
{; Alexandria, VA 22314 Technycal Director.
i‘ Navy Health Research Center
Or. Douglas L. Medin P.0. Box 85122
Department of Psychology San Drego. CA 92138
' University of [1linors
.-? 603 £. Daniel Street Dr. Allen Newell
-}{ Champaign, IL 61820 Department of Psychology
™o Carnegre-Mellon University
i Or. George A. Miller Schenley Park
- Department of Psychology Pittsburgh, PA 15213
X N Green Hall
Princeton University Or. Mary Jo Nissen
"t Princeton, NJ 08540 University of Minnesota
A N218 Elliott Hall
"Dr. Andrew R. Molnar Minneapolis, MN 55455
A Scientific and Engineering
.~ Personnel and Education Or. A. F. Norcro
o National Science Foungation Computer Science and Systems
™ washington. DC 20550 Code: 7590
’ [nformation Technology Drvrsian
N Dr. William Montague Naval Research Laboratory
N NPRDC Code 13 Washington, 0OC 20375
", San Dirego. CA 92152-6800
}n Or. Donald A. Norman
) } Dr. Nancy Morris Instrtute for Cognitive
- Search Technology. Inc. Scrence C-0Q15
. 5550-A Peachtree Parkway University of Calrfornra. San Drego
Technology Park/Summit La Jolla. Calrfornia 920933
. Norcross. GA 30092
- Deputy Technical Drrector.
o Or. Randy Mumaw NPRDC Code 01A
- Program Manager Sar Drego, CA 32152-A300
- Training Research Division
. HumRRO Director, Training Laboratory,
° 1100 S. washington NPRDC (Code 05)
o Alexandrra, VA 22314 San Diego. (A 321527300
Or. Allan Munro Director, Manpower and Personne!
. Behavioral Technology Laboratory.
- Laboratorves - USC NPRDC (Coge 06)
S 1845 S. Elena Ave., ath Floor 5an Drego. CA 32152 -6200
] Redondo Beach, CA 30277
Y
2
*
-
¥ -
L,
L]
e
N
.
»

X -

NN W

,. -
,'.-,'f.. .“-i

&N

(3 -" R

) Al 4'-/

ANNS

2L

AR

f 2 R U NS N Y

o s e

L N

{OSK}<LISPFILES>DRIBO310A. 2

“t, Sl tat Al al el ta Vet el taltotal Yal Yad. at talt

10-Mar-37 29:27:48

?age 3

133763109

Oistribution List [Prttsburgh/Lesgold] NR 4422529

Director, Human Factors
& Organrzational Systems Lab,
NPRDC (Code 07)

San Diego. CA 92152-K800

Fleet Support Office,
NPROC (Code 301)
San Diego. CA 92152-6800

Library, NPROC
Code P201L
San Drego. CA 92152-6800

Technical Director,
Navy Personnel RAD Center
San Diego. CA 32152-r800

Commanding Officer,

Naval Research Laboratory
Code 2627
Washington. OC 20390

Or. Harold F. O'Ner!, Jr.

School of Education - WwPH 801

Department of Educational
Psychology & Technology

Universaity of Southern California

Los Angeles, CA 90089-0031

Dr. Michael Oberlin

Naval Training Systems Center
Code 711

Orlando, ft 32813-7100

Dr. Stellan Ohlsson
Learning R & D Center
Universtty of Pittsburgh
3933 O'Hara Street
Pittsburgh, PA 15213

Office of Naval Research,
Code 114281

800 N. Quincy Street

Artington, VA 22217-5000

Office of Naval Research.
Code 1142

800 N. Quincy St.

Ariington, VA 22217-5000

Office of Naval Research,
Code 1142PS

300 N. Quincy Street

Arlington., VA 22217 5000

Office of Naval Research.
Code 1142(CS

300 N. Quincy Street

Artington, VA 22217-5000

(6 Copies)

?sychologist.
Office of Naval Research
Branch Office. London
Box 39
FPO New York. NY 09510

Special Assistant for Marine
Corps Matters,
CNR Code 00MC

300 N. Quincy St.

Arlington. VA 22217-5000

Psychologist,

Offrce of Naval Research
Lrarson Offirce, far fast
APO San francisco. CA 36593

Dr. Judrth Orasanu

Army Research Institute
5001 Ersennower Avenye
Alexandria, VA 22333

Or. Douglas Pearse
DCIEM

Box 2000
Downsview, Ontario
CANADA

Or. James W. Pellegrino
University of California,
Santa Barbara
Department of Psychology
Santa Barbara, CA 33106

Dr. Virginia E. Pendergrass
Code 711

Naval Training Systems Center
Orlando. FL 32313-7100

AL M N AR

Pl 44

Prece s ss

.{:"_r'er A

{DSK}<LISPFILES>DRIBO310A. ;2

gL SRR s R
._'k!» O 1"' IO " o '(a.‘(.rm uxq.':.h.:.

10-Mar-387 09:27:48

Page 10

1987°03.179

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 £, 58th St.

Chrcago., IL 60637

MrIitary Assistant for Training and
Personnel Technology,
0USD (R & E)
Room 3D129, The Pentagon
washington., DC 20301-3080

Dr. Steven Pinker
Oepartment of Psychology
£E10-018

M. LT,

Cambridge. MA 02139

Or. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

Jr. Peter Polson
unrversity of Colorado
Department of Psychology
Boulder, CO 803C9

Dr. Michael [. Posner

Department of Neuro'ogy

washington University
Medical Schoo!

St. Lours. MO 63113

Or. Mary C. Potter
Oepartment of Psychology
MIT (E-10-032)
Cambridge, MA 02133

Dr. Paul S. Rau

Code U-32

Naval Surface weapons Center
wWwhite Oak Laboratory

Srtlver Spryng, ™MD 20303

Oc. Lynne Reder

Department of Psychoiogy
Tarnegie-Mellon Jnivers ty
Scheniey 2ark

Prttsburgh. PA 15213

Dr. James A. Reng-ra
University of *aryiand
School of Medicine
Department of teurnlogy
22 South Greene Street
Baitimore. MD 21291

Or. Wesiey Regran
AFHRL /MOD
Brooks AfB. Tt 78235

Oc. Fred Re»f

Physics Jepartment
University of L4 1farniag
Berkeley, CA 34729

Jdr. G111 Raicard

Ma1l Stop C04-14
Grumman Aerospdce Lorp
Bethpage, NY 1074

Jr. Linda G. Rober*s

Scrence, Education, and
Transportation Program

Offrce of Technology Assassment

Congress ot the Unitel States

washington. JC 20510

Jr Payl R Rosennaum
Educatror' Test g service
Pronceton. N 08541

Jr W 1Yogm 30 Rogce
Search Tecnnalogy. (0C
5550 -A Paachtree Parxway
Technotogy 2arksSummit
Norcross. LA 36392

Jr Dav:d Rume'hart

Center for Human
Information Process ny

Unrv . of Californra

ta Jolla, CA 32093

Jr Walter St ierder
Learnyng R&D lenter
University of Prtisburgn
3333 0'Hara street
Prttsburgn. PA 152%0

ww Y W v T - e

Y v w

VY Y

"

dyge Ll

Jrstrobution st [Prttsburgn. Lesgo 30 MR 1422233

Dr. Mirram Schustack

Code 51

Navy Personnel ? & J Cente
San Jirego. (A 32152-n5300

Or. Marc Sebrecnts
Department of Psychology
Weslieyan University
Middletown. 27 064375

Dr. Colleen M. Serfert
Tntellrgent 3Systems Group
Institute for

Cognit ve 3crence ({-J1
JCSD
La Jolta. CA 32033

Dr. Ben Shnerderman

Dept. of Compuyter Hereacn
University of Marylanag
College Park. MD 20742

Dr. Robert S. Shegler
Carnegie-Mellon University
Department of Psycnology
Schenley Parx

P ttspurgh. P4 15213

Or. Herbert 4 5 1mon
Department of Psychoiogy
Carnegre -Mel 'on _n'versity
Schenley Parx

Prttsburgn. =a 18213

LTCOL Robert Simpson
Jefense Advanceg ResearcH
Projects Administratan
1400 wrlson 31,aq.
Arlington. VA 22203

Dr. H. Wallace Sinaixo
Manpower fesegrch

and Advisory Servoices
Smithsontan Institstron
301 YNorth Pttt Street
Alexandrra, A 22314

Jr . Richard & Srow
Jepartment of P2sychology
Stanford Un-yersaty
Stanforg, (A 41356

r

3r . Richarg s0rensen

Navy Personnei =40 Certer

San Jreqo. CA 32152 »#00

it Katarngn T Lpoenr
Brown _n-.ersity
Jepartment of Psy,cho'ogy
Providence, 1 T72312

Iroodames L. Ltdseewsk)
HBSRArC Ay5003%e
Tarnegie Mel Ton Lnosery
Jepactnent of 255000 0]y
GLraniay Jarx
PrttsbLrgn, A L]

Ve Rogact Lter e
Jepartneat of ;]‘,!(_'M)‘Qf;!
caie ynayer oyt ty

Aox 11A. faTe Ltation

fiow Haven, 7 or ';

Jro Kur* Steuux
AFHRL,MOD

2rnows AtH

San Antancn ¢ e Sh

Loty

(95

r Qayt]
SR 5Tt LU enrt st

Tryratag Haseqrah gt

HumRRO
LisU0 G Wasnragion
A wa a1y ATl

Jr Jorn Tangnrey

AFOSR N

Ho'tang AFR D 77332

Do Kowogmy Tatsgoxa

LhaL

292 tegqaiaeeraing Heyegroh
Abnd4tory

Jrodna, to o nl?0l

Je Pac o, w4 Thoc ot e
MO o4t on

eatoal o soganees co gy
(145 Loiemgn Averie o

A e~

Lanta | Tagaco, PR

cr

7

'al “ad ‘ad ‘et o, 0 (R Sal b . & A . Fad i i e W SR SR AT N
| .
o
{OSK}CLISPFILESYIRIZDI A 2 DI T T IR Pyge U2 &
»
R R R)
Drstron,t o an A I R L T B PP A -
" - ' -
+
.
Dr. Sharon Txace Tr deatrer Wt
Army Research [stit,re Nava A r Jevelopre -
5001 E-senhower Aven,e Ceater .
Alexanarra. A 221353 loge ry2!l e
Warmirster. VA l<utd o
Jr. Jouglas Towne A
Behavioral Technoioyy . 1bs }r Hapert A Acuner A
1345 S t'ena Ave. U5 Army Ingtrrgte f tne 4
Redondo 3each. (A 30277 3ehaviora yn oot ey
S0T o senhowe s ALe .
Headquarters., J. S. Marine Torps Slecangrog, LA 031G 4)
Code MP1-20 .
4asnhyngton, OC 20380 Dro Mareen b k0t
3 v ')"_"(11)””0_‘ e e
Or. Wi liam Ut+al San iego. A) e . .
NOSC. Hawar1 Labd
3ox 397 e A oW o
<avlua. Al 96734 T .
Heaoey ARYL T e -
Jr. Xuyrt Van tehn :-
Jepartment of PSychology S A e we, ek
Zarneg-e-Mellon unisersity Navg Parsonce el et '
Schenley Park San Drego, LA 3212 - - e
2retspurgn. PA 16213 ,
e 0€ 354t e R
Jr . Hetr wWarren AvMK L URT ’
Boit 3erarex § Newman. [17 Lowry AFB. L0 4300
56 Mou - ton Street
Jambroage, MA J2123 e loseph o rou g
Memory & Cogntt e .
Jiooketth T aRSLOnC " Processes
FMC Torporatooan Mitoanal Sccence fonohgaton K
centtyl srgorant g s Aasnogrtoe s 00 Qoo L
Lith o eman Sue 0 4. s i e
Santa Lldrd. A 35000 o
Jro loug'as watrzel ()
Tode ¢ -
Ndavy Personnel R3D Tanter KR
wdn Jrego. CA 321572 Ragy [
Dr 8arbara #hite R
Boit Beranek 3 Newman. [nc i;
10 Moy ton Street - .-
CTamprocge. MA 2233 @
Jr Chraistopher wickens
DJepartment of Psychology . C
Jniversrty of [1'inors .

Champargn. 1o £1829 :

